首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >PCA feature extraction for change detection in multidimensional unlabelled streaming data
【24h】

PCA feature extraction for change detection in multidimensional unlabelled streaming data

机译:PCA特征提取用于多维未标记的流数据的变化检测

获取原文

摘要

While there is a lot of research on change detection based on the streaming classification error, finding changes in multidimensional unlabelled streaming data is still a challenge. Here we propose to apply principal component analysis (PCA) to the training data, and mine the stream of selected principal components for change in the distribution. A recently proposed semi-parametric log-likelihood change detector (SPLL) is applied to the raw and the PCA streams in an experiment involving 26 data sets and an artificially induced change. The results show that feature extraction prior to the change detection is beneficial across different data set types, and specifically for data with multiple balanced classes.
机译:尽管有很多关于基于流分类错误的更改检测的研究,但是在多维未标记的流数据中查找更改仍然是一个挑战。在这里,我们建议对训练数据应用主成分分析(PCA),并挖掘所选主成分流以改变分布。在涉及26个数据集和人为诱发变化的实验中,最近提出的半参数对数似然变化检测器(SPLL)被应用于原始流和PCA流。结果表明,在变化检测之前的特征提取对于不同的数据集类型特别是对于具有多个平衡类的数据而言是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号