首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Data-Driven $H_infty$ Control for Nonlinear Distributed Parameter Systems
【24h】

Data-Driven $H_infty$ Control for Nonlinear Distributed Parameter Systems

机译:数据驱动的 $ H_infty $ 非线性分布参数系统的控制

获取原文
获取原文并翻译 | 示例

摘要

The data-driven control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the control policy from real system data rather than the mathematical model. First, Karhunen–Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton–Jacobi–Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.
机译:本文考虑了非线性分布参数系统的数据驱动控制问题。开发了一种脱离策略的学习方法,以从实际系统数据而不是数学模型中学习控制策略。首先,将Karhunen-Loève分解用于计算经验特征函数,然后将其用于基于奇异摄动理论导出慢子系统的降阶模型(ROM)。控制问题基于ROM进行了重新表述,可以从理论上将其转化为求解Hamilton–Jacobi–Isaacs(HJI)方程。为了从实际的系统数据中学习HJI方程的解,提出了一种基于同步策略更新算法的数据驱动的非策略学习方法,并证明了其收敛性。为了实现目的,开发了基于神经网络(NN)的动作批判结构,其中使用了批判者NN和两个动作NN分别近似了值函数,控制和干扰策略。随后,采用加权残差法导出最小二乘神经网络权重调整规则。最后,将开发的数据驱动的非政策学习方法应用于非线性扩散反应过程,所得结果证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号