首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Unified Framework for Data Visualization and Coclustering
【24h】

A Unified Framework for Data Visualization and Coclustering

机译:数据可视化和集群化的统一框架

获取原文
获取原文并翻译 | 示例

摘要

We propose a new theoretical framework for data visualization. This framework is based on iterative procedure looking up an appropriate approximation of the data matrix by using two stochastic similarity matrices from the set of rows and the set of columns. This process converges to a steady state where the approximated data is composed of similar rows and similar columns. Reordering according to the first left and right singular vectors involves an optimal data reorganization revealing homogeneous block clusters. Furthermore, we show that our approach is related to a Markov chain model, to the double -means with block clusters and to a spectral coclustering. Numerical experiments on simulated and real data sets show the interest of our approach.
机译:我们为数据可视化提出了一个新的理论框架。该框架基于迭代过程,通过使用行集合和列集合中的两个随机相似性矩阵来查找数据矩阵的适当近似值。该过程收敛到稳态,在该稳态下,近似数据由相似的行和相似的列组成。根据第一个左,右奇异向量进行重新排序涉及显示均匀块簇的最佳数据重组。此外,我们证明了我们的方法与马尔可夫链模型,具有嵌段簇的双重均值和频谱共聚有关。在模拟和真实数据集上进行的数值实验表明了我们方法的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号