首页> 外文期刊>Pattern recognition letters >A unified framework for web video topic discovery and visualization
【24h】

A unified framework for web video topic discovery and visualization

机译:网络视频主题发现和可视化的统一框架

获取原文
获取原文并翻译 | 示例

摘要

Together with the explosive growth of web video in sharing sites like YouTube, automatic topic discovery and visualization have become increasingly important in helping to organize and navigate such large-scale videos. Previous work dealt with the topic discovery and visualization problem separately, and did not take fully into account of the distinctive characteristics of multi-modality and sparsity in web video features. This paper tries to solve web video topic discovery problem with visualization under a single framework, and proposes a Star-structured K-partite Graph based co-clustering and ranking framework, which consists of three stages: (1) firstly, represent the web videos and their multi-model features (e.g., keyword, near-duplicate keyframe, near-duplicate aural frame, etc.) as a Star-structured K-partite Graph; (2) secondly, group videos and their features simultaneously into clusters (topics) and organize the generated clusters as a linked cluster network; (3) finally, rank each type of nodes in the linked cluster network by "popularity" and visualize them as a novel interface to let user interactively browse topics in multi-level scales. Experiments on a YouTube benchmark dataset demonstrate the flexibility and effectiveness of our proposed framework.
机译:随着网络视频在YouTube等共享网站中的爆炸性增长,自动主题发现和可视化在帮助组织和导航此类大型视频中变得越来越重要。先前的工作分别处理主题发现和可视化问题,并且没有完全考虑网络视频功能中多模式和稀疏性的独特特征。本文试图在单一框架下通过可视化解决网络视频主题发现问题,并提出了一种基于星型K-partite图的共聚和排名框架,该框架包括三个阶段:(1)首先,代表网络视频以及它们的多模型特征(例如关键字,近似重复的关键帧,近似重复的听觉帧等)作为星形结构的K部分图; (2)其次,将视频及其特征同时分组为群集(主题),并将生成的群集组织为链接的群集网络; (3)最后,按“受欢迎程度”对链接的群集网络中的每种类型的节点进行排名,并将它们可视化为一个新颖的界面,以使用户能够以多级规模交互式地浏览主题。 YouTube基准数据集上的实验证明了我们提出的框架的灵活性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号