首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Dimensionality Reduction for Hyperspectral Data Based on Class-Aware Tensor Neighborhood Graph and Patch Alignment
【24h】

Dimensionality Reduction for Hyperspectral Data Based on Class-Aware Tensor Neighborhood Graph and Patch Alignment

机译:基于类感知张量邻域图和面片对齐的高光谱数据降维

获取原文
获取原文并翻译 | 示例

摘要

To take full advantage of hyperspectral information, to avoid data redundancy and to address the curse of dimensionality concern, dimensionality reduction (DR) becomes particularly important to analyze hyperspectral data. Exploring the tensor characteristic of hyperspectral data, a DR algorithm based on class-aware tensor neighborhood graph and patch alignment is proposed here. First, hyperspectral data are represented in the tensor form through a window field to keep the spatial information of each pixel. Second, using a tensor distance criterion, a class-aware tensor neighborhood graph containing discriminating information is obtained. In the third step, employing the patch alignment framework extended to the tensor space, we can obtain global optimal spectral–spatial information. Finally, the solution of the tensor subspace is calculated using an iterative method and low-dimensional projection matrixes for hyperspectral data are obtained accordingly. The proposed method effectively explores the spectral and spatial information in hyperspectral data simultaneously. Experimental results on 3 real hyperspectral datasets show that, compared with some popular vector- and tensor-based DR algorithms, the proposed method can yield better performance with less tensor training samples required.
机译:为了充分利用高光谱信息,避免数据冗余并解决维数问题的诅咒,降维(DR)对于分析高光谱数据变得尤为重要。为了探索高光谱数据的张量特性,提出了一种基于类感知张量邻域图和斑块对齐的DR算法。首先,高光谱数据以张量形式通过窗口字段表示,以保留每个像素的空间信息。其次,使用张量距离准则,获得包含区分信息的类感知张量邻域图。在第三步中,使用扩展到张量空间的面片对齐框架,我们可以获得全局最佳光谱空间信息。最后,使用迭代方法计算张量子空间的解,并据此获得用于高光谱数据的低维投影矩阵。所提出的方法有效地同时探索了高光谱数据中的光谱和空间信息。在3个真实的高光谱数据集上的实验结果表明,与一些流行的基于矢量和张量的DR算法相比,该方法可以在不需要张量训练样本的情况下获得更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号