首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Finite-Horizon Approximate Optimal Guaranteed Cost Control of Uncertain Nonlinear Systems With Application to Mars Entry Guidance
【24h】

Finite-Horizon Approximate Optimal Guaranteed Cost Control of Uncertain Nonlinear Systems With Application to Mars Entry Guidance

机译:不确定非线性系统的有限地平线近似最优保成本控制在火星进入制导中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the finite-horizon optimal guaranteed cost control (GCC) problem for a class of time-varying uncertain nonlinear systems. The aim of this problem is to find a robust state feedback controller such that the closed-loop system has not only a bounded response in a finite duration of time for all admissible uncertainties but also a minimal guaranteed cost. A neural network (NN) based approximate optimal GCC design is developed. Initially, by modifying the cost function to account for the nonlinear perturbation of system, the optimal GCC problem is transformed into a finite-horizon optimal control problem of the nominal system. Subsequently, with the help of the modified cost function together with a parametrized bounding function for all admissible uncertainties, the solution to the optimal GCC problem is given in terms of a parametrized Hamilton–Jacobi–Bellman (PHJB) equation. Then, a NN method is developed to solve offline the PHJB equation approximately and thus obtain the nearly optimal GCC policy. Furthermore, the convergence of approximate PHJB equation and the robust admissibility of nearly optimal GCC policy are also analyzed. Finally, by applying the proposed design method to the entry guidance problem of the Mars lander, the achieved simulation results show the effectiveness of the proposed controller.
机译:研究了一类时变不确定非线性系统的有限水平最优保证成本控制(GCC)问题。该问题的目的是找到一种鲁棒的状态反馈控制器,以使闭环系统不仅在有限的时间内针对所有可容许的不确定性具有有限的响应,而且具有最低的保证成本。开发了基于神经网络的近似最佳GCC设计。最初,通过修改成本函数以解决系统的非线性扰动,将最优GCC问题转化为标称系统的有限水平最优控制问题。随后,借助修改后的成本函数以及针对所有可容许不确定性的参数化边界函数,根据参数化的Hamilton–Jacobi–Bellman(PHJB)方程给出了最佳GCC问题的解决方案。然后,开发了一种神经网络方法来近似地离线求解PHJB方程,从而获得接近最优的GCC策略。此外,还分析了近似PHJB方程的收敛性和近似最优GCC策略的鲁棒容许性。最后,将所提出的设计方法应用于火星着陆器的进入制导问题,所获得的仿真结果表明了所提出的控制器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号