首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Self-Organizing Neural Networks Integrating Domain Knowledge and Reinforcement Learning
【24h】

Self-Organizing Neural Networks Integrating Domain Knowledge and Reinforcement Learning

机译:整合领域知识和强化学习的自组织神经网络

获取原文
获取原文并翻译 | 示例

摘要

The use of domain knowledge in learning systems is expected to improve learning efficiency and reduce model complexity. However, due to the incompatibility with knowledge structure of the learning systems and real-time exploratory nature of reinforcement learning (RL), domain knowledge cannot be inserted directly. In this paper, we show how self-organizing neural networks designed for online and incremental adaptation can integrate domain knowledge and RL. Specifically, symbol-based domain knowledge is translated into numeric patterns before inserting into the self-organizing neural networks. To ensure effective use of domain knowledge, we present an analysis of how the inserted knowledge is used by the self-organizing neural networks during RL. To this end, we propose a vigilance adaptation and greedy exploitation strategy to maximize exploitation of the inserted domain knowledge while retaining the plasticity of learning and using new knowledge. Our experimental results based on the pursuit-evasion and minefield navigation problem domains show that such self-organizing neural network can make effective use of domain knowledge to improve learning efficiency and reduce model complexity.
机译:在学习系统中使用领域知识有望提高学习效率并降低模型复杂性。但是,由于与学习系统的知识结构不兼容以及强化学习(RL)的实时探索性,无法直接插入领域知识。在本文中,我们展示了为在线和增量式适应而设计的自组织神经网络如何将领域知识与RL集成在一起。具体来说,在插入自组织神经网络之前,将基于符号的领域知识转换为数字模式。为了确保有效利用领域知识,我们对RL期间自组织神经网络如何使用插入的知识进行了分析。为此,我们提出了一种警惕性适应和贪婪开发策略,以最大程度地利用所插入的领域知识,同时保留学习和使用新知识的可塑性。我们基于追逃和雷场导航问题域的实验结果表明,这种自组织神经网络可以有效地利用领域知识来提高学习效率并降低模型复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号