首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Twin Neurons for Efficient Real-World Data Distribution in Networks of Neural Cliques: Applications in Power Management in Electronic Circuits
【24h】

Twin Neurons for Efficient Real-World Data Distribution in Networks of Neural Cliques: Applications in Power Management in Electronic Circuits

机译:双神经元神经网络在网络中有效地进行实际数据分配:在电子电路电源管理中的应用

获取原文
获取原文并翻译 | 示例

摘要

Associative memories are data structures that allow retrieval of previously stored messages given part of their content. They, thus, behave similarly to the human brain’s memory that is capable, for instance, of retrieving the end of a song, given its beginning. Among different families of associative memories, sparse ones are known to provide the best efficiency (ratio of the number of bits stored to that of the bits used). Recently, a new family of sparse associative memories achieving almost optimal efficiency has been proposed. Their structure, relying on binary connections and neurons, induces a direct mapping between input messages and stored patterns. Nevertheless, it is well known that nonuniformity of the stored messages can lead to a dramatic decrease in performance. In this paper, we show the impact of nonuniformity on the performance of this recent model, and we exploit the structure of the model to improve its performance in practical applications, where data are not necessarily uniform. In order to approach the performance of networks with uniformly distributed messages presented in theoretical studies, twin neurons are introduced. To assess the adapted model, twin neurons are used with the real-world data to optimize power consumption of electronic circuits in practical test cases.
机译:关联存储器是一种数据结构,它可以根据给定的内容的一部分来检索以前存储的消息。因此,它们的行为类似于人脑的记忆,例如,能够根据歌曲的开头来检索歌曲的结尾。在不同的关联存储器家族中,稀疏存储器可以提供最佳效率(存储的位数与所使用的位数之比)。近来,已经提出了实现几乎最佳效率的稀疏关联存储器的新家族。它们的结构依赖于二进制连接和神经元,从而在输入消息和存储的模式之间产生直接映射。但是,众所周知,存储消息的不均匀会导致性能急剧下降。在本文中,我们显示了非均匀性对此最新模型的性能的影响,并在数据不一定一致的实际应用中,利用模型的结构来提高其性能。为了用理论研究中介绍的具有均匀分布消息的网络性能来实现,引入了双神经元。为了评估调整后的模型,在实际测试案例中,将双神经元与实际数据一起使用以优化电子电路的功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号