首页> 外文期刊>IEE proceedings. Part E, Computers and digital techniques >Efficient power modelling approach of sequential circuits using recurrent neural networks
【24h】

Efficient power modelling approach of sequential circuits using recurrent neural networks

机译:递归神经网络的时序电路有效功率建模方法

获取原文
获取原文并翻译 | 示例

摘要

Building complex digital circuit power models is a popular approach for estimating the average power consumption without detailed circuit information. In the literature, most power models must increase in complexity to meet the accuracy requirement. The authors propose a novel power model for complementary metal-oxide-semiconductor sequential circuits using recurrent neural networks to learn the relationship between the input/output signal statistics and the corresponding average power dissipation. The complexity of our neural power model has almost no relationship to the circuit size and the number of inputs, outputs and flip-flops such that this power model can be kept very small, even for complex circuits. Using such a simple structure, the neural power models can still have high accuracy because they can automatically consider the non-linear power distribution characteristics and temporal correlation of the input sequences. The experimental results have shown that the estimations are still accurate with smaller variations even for short sequences with only 50 pattern pairs.
机译:建立复杂的数字电路功率模型是一种在没有详细电路信息的情况下估算平均功耗的流行方法。在文献中,大多数功率模型必须增加复杂度才能满足精度要求。作者提出了一种使用递归神经网络的互补金属氧化物半导体时序电路的新型功率模型,以了解输入/输出信号统计量与相应平均功耗之间的关系。我们的神经功率模型的复杂性几乎与电路大小以及输入,输出和触发器的数量没有关系,因此即使对于复杂电路,该功率模型也可以保持很小。使用这种简单的结构,神经功率模型仍然可以具有较高的精度,因为它们可以自动考虑非线性功率分布特性和输入序列的时间相关性。实验结果表明,即使对于只有50个模式对的短序列,估计值仍具有较小的变化,仍然是准确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号