首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Exponential Synchronization of Coupled Stochastic Memristor-Based Neural Networks With Time-Varying Probabilistic Delay Coupling and Impulsive Delay
【24h】

Exponential Synchronization of Coupled Stochastic Memristor-Based Neural Networks With Time-Varying Probabilistic Delay Coupling and Impulsive Delay

机译:时变概率时滞耦合和脉冲时滞耦合基于忆阻器的神经网络的指数同步

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the exponential synchronization of coupled stochastic memristor-based neural networks with probabilistic time-varying delay coupling and time-varying impulsive delay. There is one probabilistic transmittal delay in the delayed coupling that is translated by a Bernoulli stochastic variable satisfying a conditional probability distribution. The disturbance is described by a Wiener process. Based on Lyapunov functions, Halanay inequality, and linear matrix inequalities, sufficient conditions that depend on the probability distribution of the delay coupling and the impulsive delay were obtained. Numerical simulations are used to show the effectiveness of the theoretical results.
机译:本文研究了具有时变时滞耦合和时变脉冲时滞的基于随机忆阻器的耦合神经网络的指数同步。在延迟耦合中存在一个概率传递延迟,该延迟由满足条件概率分布的伯努利随机变量转换而成。扰动由维纳过程描述。基于Lyapunov函数,Halanay不等式和线性矩阵不等式,获得了充分的条件,这些条件取决于延迟耦合和脉冲延迟的概率分布。数值模拟表明了理论结果的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号