首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form
【24h】

Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form

机译:基于非观测反馈形式的非线性系统基于观测器的自适应神经网络控制

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.
机译:本文针对一类通过输出反馈的非线性非严格反馈系统的自适应神经网络控制问题。首先针对非线性非严格反馈系统提出了一种新型的自适应神经网络后推输出反馈控制方法。系统边界函数的单调性和径向基函数(RBF)神经网络的结构特征被用来克服非严格反馈结构所带来的困难。构建状态观察器以估计不可估量的状态变量。通过将自适应反步技术与径向基函数神经网络的逼近能力相结合,通过反步法设计了一种输出反馈自适应神经网络控制器。结果表明,所提出的控制器保证了闭环系统中所有信号的半全局有界性。使用两个示例来说明所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号