首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Transductive Zero-Shot Learning With Adaptive Structural Embedding
【24h】

Transductive Zero-Shot Learning With Adaptive Structural Embedding

机译:具有自适应结构嵌入的转导零射学习

获取原文
获取原文并翻译 | 示例

摘要

Zero-shot learning (ZSL) endows the computer vision system with the inferential capability to recognize new categories that have never seen before. Two fundamental challenges in it are visual-semantic embedding and domain adaptation in cross-modality learning and unseen class prediction steps, respectively. This paper presents two corresponding methods named Adaptive STructural Embedding (ASTE) and Self-PAced Selective Strategy (SPASS) for both challenges. Specifically, ASTE formulates the visual-semantic interactions in a latent structural support vector machine framework by adaptively adjusting the slack variables to embody different reliablenesses among training instances. To alleviate the domain shift problem in ZSL, SPASS borrows the idea from self-paced learning by iteratively selecting the unseen instances from reliable to less reliable to gradually adapt the knowledge from the seen domain to the unseen domain. Consequently, by combining SPASS and ASTE, we present a self-paced Transductive ASTE (TASTE) method to progressively reinforce the classification capacity. Extensive experiments on three benchmark data sets (i.e., AwA, CUB, and aPY) demonstrate the superiorities of ASTE and TASTE. Furthermore, we also propose a fast training (FT) strategy to improve the efficiency of most existing ZSL methods. The FT strategy is surprisingly simple and general enough, which speeds up the training time of most existing ZSL methods by 4~300 times while holding the previous performance.
机译:零镜头学习(ZSL)使计算机视觉系统具有推理能力,可以识别以前从未见过的新类别。它的两个基本挑战分别是跨模式学习中的视觉语义嵌入和领域适应以及看不见的类预测步骤。本文针对两种挑战提出了两种相应的方法,分别称为自适应结构嵌入(ASTE)和自定步选择策略(SPASS)。具体来说,ASTE通过自适应地调整松弛变量以体现训练实例之间的不同可靠性,在潜在的结构支持向量机框架中制定视觉语义交互。为了缓解ZSL中的域迁移问题,SPASS通过从可靠的学习对象到不可靠的学习对象中反复选择未见实例,从渐进式学习中借鉴了这一思想,以逐步将知识从已见域应用于未见域。因此,通过结合SPASS和ASTE,我们提出了一种自定进度的转导式ASTE(TASTE)方法,以逐步增强分类能力。在三个基准数据集(即AwA,CUB和aPY)上进行的广泛实验证明了ASTE和TASTE的优势。此外,我们还提出了一种快速训练(FT)策略,以提高大多数现有ZSL方法的效率。 FT策略非常简单和通用,足以将大多数现有ZSL方法的训练时间提高4到300倍,同时保持了以前的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号