首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >LSTM-MSNet: Leveraging Forecasts on Sets of Related Time Series With Multiple Seasonal Patterns
【24h】

LSTM-MSNet: Leveraging Forecasts on Sets of Related Time Series With Multiple Seasonal Patterns

机译:LSTM-MSNet:利用多种季节性模式的相关时间序列集预测

获取原文
获取原文并翻译 | 示例

摘要

Generating forecasts for time series with multiple seasonal cycles is an important use case for many industries nowadays. Accounting for the multiseasonal patterns becomes necessary to generate more accurate and meaningful forecasts in these contexts. In this article, we propose long short-term memory multiseasonal net (LSTM-MSNet), a decomposition-based unified prediction framework to forecast time series with multiple seasonal patterns. The current state of the art in this space is typically univariate methods, in which the model parameters of each time series are estimated independently. Consequently, these models are unable to include key patterns and structures that may be shared by a collection of time series. In contrast, LSTM-MSNet is a globally trained LSTM network, where a single prediction model is built across all the available time series to exploit the cross-series knowledge in a group of related time series. Furthermore, our methodology combines a series of state-of-the-art multiseasonal decomposition techniques to supplement the LSTM learning procedure. In our experiments, we are able to show that on data sets from disparate data sources, e.g., the popular M4 forecasting competition, a decomposition step is beneficial, whereas, in the common real-world situation of homogeneous series from a single application, exogenous seasonal variables or no seasonal preprocessing at all are better choices. All options are readily included in the framework and allow us to achieve competitive results for both cases, outperforming many state-of-the-art multiseasonal forecasting methods.
机译:为多个季节周期产生时间序列的预测是许多行业的重要用例。在这些上下文中产生多季度模式的核算变得必要生成更准确和有意义的预测。在本文中,我们提出了长期内记忆多季度网(LSTM-MSNet),是一种基于分解的统一预测框架,以预测具有多个季节性模式的时间序列。在该空间中的本领域的当前状态通常是单变量的方法,其中每个时间序列的模型参数独立地估计。因此,这些模型不能包括可以通过时间序列集合共享的关键模式和结构。相比之下,LSTM-MSNet是一个全球训练的LSTM网络,其中,在所有可用时间序列中建立了一个预测模型,以利用一组相关时间序列中的跨系列知识。此外,我们的方法结合了一系列最先进的多季度分解技术来补充LSTM学习程序。在我们的实验中,我们能够表明,在不同数据源的数据集上,例如,流行的M4预测竞争,分解步骤是有益的,而在单一应用中的均匀系列的常见现实情况下,外源性季节性变量或根本没有季节性预处理是更好的选择。所有选项都容易包含在框架中,并允许我们实现两种情况的竞争结果,优于许多最先进的多季度预测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号