首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Robust Kernelized Multiview Self-Representation for Subspace Clustering
【24h】

Robust Kernelized Multiview Self-Representation for Subspace Clustering

机译:用于子空间聚类的强大的内核多视图自我表示

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a multiview self-representation model for nonlinear subspaces clustering. By assuming that the heterogeneous features lie within the union of multiple linear subspaces, the recent multiview subspace learning methods aim to capture the complementary and consensus from multiple views to boost the performance. However, in real-world applications, data feature usually resides in multiple nonlinear subspaces, leading to undesirable results. To this end, we propose a kernelized version of tensor-based multiview subspace clustering, which is referred to as Kt-SVD-MSC, to jointly learn self-representation coefficients in mapped high-dimensional spaces and multiple views correlation in unified tensor space. In view-specific feature space, a kernel-induced mapping is introduced for each view to ensure the separability of self-representation coefficients. In unified tensor space, a new kind of tensor low-rank regularizer is employed on the rotated self-representation coefficient tensor to preserve the global consistency across different views. We also derive an algorithm to efficiently solve the optimization problem with all the subproblems having closed-form solutions. Furthermore, by incorporating the nonnegative and sparsity constraints, the proposed method can be easily extended to a useful variant, meaning that several useful variants can be easily constructed in a similar way. Extensive experiments of the proposed method are tested on eight challenging data sets, in which a significant (even a breakthrough) advance over state-of-the-art multiview clustering is achieved.
机译:在本文中,我们提出了一种用于非线性子空间聚类的多视图自我表示模型。假设异构特征在多个线性子空间的联盟内,最近的多视图子空间学习方法旨在从多个视图中捕获互补和共识,以提高性能。但是,在现实世界应用中,数据功能通常驻留在多个非线性子空间中,导致不良结果。为此,我们提出了一种基于卷的多视图子空间聚类的内核,其被称为KT-SVD-MSC,共同学习映射的高维空间中的自我表示系数和统一的张量空间中的多视图相关性。在特定于视图特征空间中,为每个视图引入内核引起的映射,以确保自表示系数的可分离性。在统一的张量空间中,在旋转的自表示系数张量上采用了一种新的张力低级规范器,以保持不同视图的全局一致性。我们还导出了一种算法,可以有效地解决了具有闭合性解决方案的所有子问题的优化问题。此外,通过掺入非负和稀疏限制,可以容易地扩展到所提出的方法,这意味着可以以类似的方式容易地构造几种有用的变型。在八个具有挑战性的数据集上测试了该方法的广泛实验,其中实现了通过最先进的多视图聚类的显着(甚至突破)前进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号