首页> 外文期刊>Cybernetics, IEEE Transactions on >Hyper-Laplacian Regularized Multilinear Multiview Self-Representations for Clustering and Semisupervised Learning
【24h】

Hyper-Laplacian Regularized Multilinear Multiview Self-Representations for Clustering and Semisupervised Learning

机译:Hyper-Laplacian正规化多线性多视线自我表示,用于聚类和半体育学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the multiview nonlinear subspace representation problem. Traditional multiview subspace learning methods assume that the heterogeneous features of the data usually lie within the union of multiple linear subspaces. However, instead of linear subspaces, the data feature actually resides in multiple nonlinear subspaces in many real-world applications, resulting in unsatisfactory clustering performance. To overcome this, we propose a hyper-Laplacian regularized multilinear multiview self-representation model, which is referred to as HLR-(MVS)-V-2, to jointly learn multiple views correlation and a local geometrical structure in a unified tensor space and view-specific self-representation feature spaces, respectively. In unified tensor space, a well-founded tensor low-rank regularization is adopted to impose on the self-representation coefficient tensor to ensure global consensus among different views. In view-specific feature space, hypergraph-induced hyper-Laplacian regularization is utilized to preserve the local geometrical structure embedded in a high-dimensional ambient space. An efficient algorithm is then derived to solve the optimization problem of the established model with theoretical convergence guarantee. Furthermore, the proposed model can be extended to semisupervised classification without introducing any additional parameters. An extensive experiment of our method is conducted on many challenging datasets, where a clear advance over state-of-the-art multiview clustering and multiview semisupervised classification approaches is achieved.
机译:在本文中,我们解决了多视图非线性子空间表示问题。传统的多视图子空间学习方法假设数据的异构特征通常位于多个线性子空间的联合内。但是,而不是线性子空间,数据功能实际上驻留在许多真实应用程序中的多个非线性子空间中,从而导致群集性能不满。为了克服这一点,我们提出了一种超级拉普拉斯正则化多线性多视图自我表示模型,其被称为HLR-(MVS)-V-2,以共同学习多个视图相关和局部几何结构在统一的张量空间中查看特定的自我表示功能空间。在统一的张量空间中,采用了良好的张力低级正则化来强加自表示系数张量,以确保不同视图之间的全球共识。在特定于观点的特征空间中,利用超图诱导的超级拉普拉斯规范化来保护嵌入在高维环境空间中的局部几何结构。然后导出了一种有效的算法,以解决具有理论收敛保障的建立模型的优化问题。此外,所提出的模型可以扩展到半体积分类而不引入任何其他参数。在许多具有挑战性的数据集中进行了广泛的实验,在那里实现了最先进的多视图聚类和多视图半化分类方法的清晰提前。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号