首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Prior Knowledge Regularized Multiview Self-Representation and its Applications
【24h】

Prior Knowledge Regularized Multiview Self-Representation and its Applications

机译:先验知识正常化多视图自我代表及其应用

获取原文
获取原文并翻译 | 示例

摘要

To learn the self-representation matrices/tensor that encodes the intrinsic structure of the data, existing multiview self-representation models consider only the multiview features and, thus, impose equal membership preference across samples. However, this is inappropriate in real scenarios since the prior knowledge, e.g., explicit labels, semantic similarities, and weak-domain cues, can provide useful insights into the underlying relationship of samples. Based on this observation, this article proposes a prior knowledge regularized multiview self-representation (P-MVSR) model, in which the prior knowledge, multiview features, and high-order cross-view correlation are jointly considered to obtain an accurate self-representation tensor. The general concept of "prior knowledge" is defined as the complement of multiview features, and the core of P-MVSR is to take advantage of the membership preference, which is derived from the prior knowledge, to purify and refine the discovered membership of the data. Moreover, P-MVSR adopts the same optimization procedure to handle different prior knowledge and, thus, provides a unified framework for weakly supervised clustering and semisupervised classification. Extensive experiments on real-world databases demonstrate the effectiveness of the proposed P-MVSR model.
机译:为了学习编码数据的内在结构的自我表示矩阵/张量,现有的多视图自我表示模型仅考虑多视图特征,因此,跨越样本施加相同的成员资格偏好。然而,由于事先知识,例如,显式标签,语义相似性和弱域提示,这是不合适的,这可以为样本的底层关系提供有用的见解。基于该观察,本文提出了先验知识正则化的多视图自我表示(P-MVSR)模型,其中,先前的知识,多视图特征和高阶跨视网围是共同考虑的,以获得准确的自我表示张量。 “先前知识”的一般概念被定义为多视图特征的补充,P-MVSR的核心是利用来自先前知识的成员偏好,以净化和完善发现的已发现的成员资格数据。此外,P-MVSR采用相同的优化过程来处理不同的先验知识,因此为弱监督聚类和半培训分类提供统一的框架。关于现实数据库的广泛实验证明了所提出的P-MVSR模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号