首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Robust Low-Rank Kernel Subspace Clustering based on the Schatten p-norm and Correntropy
【24h】

Robust Low-Rank Kernel Subspace Clustering based on the Schatten p-norm and Correntropy

机译:基于Schatten P-Norm和Correntropy的强大低级核子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Subspace clustering plays an important role in the tasks such as data processing and pattern recognition. Since the high-dimensional data may contain complex noise, as well as non-linear structure, learning low-dimensional subspace structures is a challenging task. However, the existing methods to deal with both problems relax the original problem convexly. The results of solving by these methods deviate from the solution of the original problem. In this paper, to overcome this deficiency, we propose a robust low-rank kernel subspace clustering model, which coalesces the non-convex Schatten p-norm (0 < p <= 1) regularizer with "kernel trick" and correntropy. Our "kernel trick" extends linear subspace clustering to non-linear counterparts, the Schatten p-norm regularizer can approximate the rank of the data in feature space effectively, and the correntropy is a robust measure to large corruptions. Furthermore, an efficient iterative algorithm (HQ-ADMM) is designed to solve the formulated problem, which coalesces the half-quadratic technique and Alternating Direction Method of Multipliers. This algorithm can ensure the closed form solutions at each iteration, which improves the computation speed of the algorithm. Extensive experiments on face/object clustering and motion segmentation clearly attest the ascendancy of the proposed method over several state-of-the-art methods.
机译:子空间群集在数据处理和模式识别等任务中扮演重要作用。由于高维数据可以包含复杂的噪声,以及非线性结构,学习低维子空间结构是一个具有挑战性的任务。但是,现有方法处理这两个问题都会放松原来的问题凸起。通过这些方法解决的结果偏离了原始问题的解决方案。在本文中,为了克服这种缺陷,我们提出了一种强大的低级内核子空间聚类模型,它将非凸分裂的P-NORM(0

著录项

  • 来源
    《IEEE Transactions on Knowledge and Data Engineering》 |2020年第12期|2426-2437|共12页
  • 作者单位

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China|Southwest Univ Sci & Technol Sch Informat Engn Mianyang 621010 Sichuan Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China;

    Southwest Univ Sci & Technol Sch Informat Engn Mianyang 621010 Sichuan Peoples R China;

    Southwest Univ Sci & Technol Sch Natl Def Sci & Technol Mianyang 621010 Sichuan Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subspace clustering; low-rank kernel; Schatten p-norm; correntropy; HQ-ADMM;

    机译:子空间聚类;低级内核;Schatten P-Norm;管制;HQ-ADMM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号