首页> 外文OA文献 >Kernel truncated regression representation for robust subspace clustering
【2h】

Kernel truncated regression representation for robust subspace clustering

机译:适用于鲁棒子空间聚类的内核截断的回归表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Subspace clustering aims to group data points into multiple clusters of whicheach corresponds to one subspace. Most existing subspace clustering methodsassume that the data could be linearly represented with each other in the inputspace. In practice, however, this assumption is hard to be satisfied. Toachieve nonlinear subspace clustering, we propose a novel method which consistsof the following three steps: 1) projecting the data into a hidden space inwhich the data can be linearly reconstructed from each other; 2) calculatingthe globally linear reconstruction coefficients in the kernel space; 3)truncating the trivial coefficients to achieve robustness andblock-diagonality, and then achieving clustering by solving a graph Laplacianproblem. Our method has the advantages of a closed-form solution and capacityof clustering data points that lie in nonlinear subspaces. The first advantagemakes our method efficient in handling large-scale data sets, and the secondone enables the proposed method to address the nonlinear subspace clusteringchallenge. Extensive experiments on five real-world datasets demonstrate theeffectiveness and the efficiency of the proposed method in comparison with tenstate-of-the-art approaches regarding four evaluation metrics.
机译:子空间群集旨在将数据点分为多个与一个子空间对应的多个群集。大多数现有子空间群集方法属性可以在InputSpace中彼此线性地表示数据。然而,在实践中,这种假设很难满足。 Toachieve非线性子空间聚类,我们提出了一种新的方法,该方法包括以下三个步骤:1)将数据投射到隐藏的空间中,其中数据可以彼此线性地重建; 2)计算内核空间的全球线性重建系数; 3)截断琐碎的系数以实现鲁棒性和块对角线,然后通过求解图拉普拉斯问题来实现群集。我们的方法具有封闭式解决方案的优点,以及位于非线性子空间中的聚类数据点的优点。首次开发我们的方法在处理大规模数据集方面有效,并且Secondone使得提出的方法能够解决非线性子空间群集核。关于五个现实数据集的广泛实验证明了与第四个评估指标的最新方法相比,拟议方法的无效和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号