首页> 外文期刊>Neural processing letters >Robust Subspace Clustering via Latent Smooth Representation Clustering
【24h】

Robust Subspace Clustering via Latent Smooth Representation Clustering

机译:通过潜在平滑表示聚类的强大子空间群集

获取原文
获取原文并翻译 | 示例

摘要

Subspace clustering aims to group high-dimensional data samples into several subspaces which they were generated. Among the existing subspace clustering methods, spectral clustering-based algorithms have attracted considerable attentions because of their predominant performances shown in many subspace clustering applications. In this paper, we proposed to apply smooth representation clustering (SMR) to the reconstruction coefficient vectors which were obtained by sparse subspace clustering (SSC). Because the reconstruction coefficient vectors could be regarded as a kind of good representations of original data samples, the proposed method could be considered as a SMR performed in a latent sub-space found by SSC and hoped to achieve better performances. For solving the proposed latent smooth representation algorithm (LSMR), we presented an optimization method and also discussed the relationships between LSMR with some related algorithms. Finally, experiments conducted on several famous databases demonstrate that the proposed algorithm dominates the related algorithms.
机译:子空间群集旨在将高维数据样本分组为它们生成的几个子空间。在现有的子空间聚类方法中,基于频谱聚类的算法由于许多子空间聚类应用程序中所示的主要性能而引起了相当大的关注。在本文中,我们建议将光滑的表示聚类(SMR)应用于通过稀疏子空间聚类(SSC)获得的重建系数向量。因为重建系数矢量可以被视为原始数据样本的一种良好表示,所以所提出的方法可以被认为是在SSC的潜在子空间中执行的SMR,并希望实现更好的性能。为了解决所提出的潜在光滑表示算法(LSMR),我们提出了一种优化方法,并讨论了利用一些相关算法的LSMR之间的关系。最后,在几个着名数据库上进行的实验表明,所提出的算法主导相关算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号