首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Novel Learning Algorithm to Optimize Deep Neural Networks: Evolved Gradient Direction Optimizer (EVGO)
【24h】

A Novel Learning Algorithm to Optimize Deep Neural Networks: Evolved Gradient Direction Optimizer (EVGO)

机译:一种优化深神经网络的新型学习算法:进化梯度方向优化器(EVGO)

获取原文
获取原文并翻译 | 示例

摘要

Gradient-based algorithms have been widely used in optimizing parameters of deep neural networks' (DNNs) architectures. However, the vanishing gradient remains as one of the common issues in the parameter optimization of such networks. To cope with the vanishing gradient problem, in this article, we propose a novel algorithm, evolved gradient direction optimizer (EVGO), updating the weights of DNNs based on the first-order gradient and a novel hyperplane we introduce. We compare the EVGO algorithm with other gradient-based algorithms, such as gradient descent, RMSProp, Adagrad, momentum, and Adam on the well-known Modified National Institute of Standards and Technology (MNIST) data set for handwritten digit recognition by implementing deep convolutional neural networks. Furthermore, we present empirical evaluations of EVGO on the CIFAR-10 and CIFAR-100 data sets by using the well-known AlexNet and ResNet architectures. Finally, we implement an empirical analysis for EVGO and other algorithms to investigate the behavior of the loss functions. The results show that EVGO outperforms all the algorithms in comparison for all experiments. We conclude that EVGO can be used effectively in the optimization of DNNs, and also, the proposed hyperplane may provide a basis for future optimization algorithms.
机译:基于梯度的算法已被广泛用于优化深神经网络(DNN)架构的参数。然而,消失梯度仍然是这种网络参数优化中的常见问题之一。为了应对消失的梯度问题,在本文中,我们提出了一种新颖的算法,进化梯度方向优化器(EVGO),根据我们介绍的一阶梯度和新型超平面更新DNN的权重。我们将EVGO算法与其他基于梯度的算法进行比较,例如渐变下降,RMSPROP,Adagrad,势头和亚当着名的修改的国家标准和技术研究所(MNIST)数据集,用于通过实施深卷积的手写的数字识别神经网络。此外,我们通过使用众所周知的AlexNet和Reset架构向CiFar-10和CiFar-100数据集的EVGO对EVGO的实证评估。最后,我们为eVPO和其他算法实施了实证分析,以研究损失功能的行为。结果表明,EVGO与所有实验相比优于所有算法。我们得出结论,EVGO可以有效地用于DNN的优化,而且,所提出的超平板可以为未来优化算法提供基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号