首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
【24h】

Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks

机译:迭代代理模型优化(ISMO):具有深神经网络的PDE约束优化的主动学习算法

获取原文
获取原文并翻译 | 示例

摘要

We present a novel active learning algorithm, termed as iterative surrogate model optimization (ISMO), for robust and efficient numerical approximation of PDE constrained optimization problems. This algorithm is based on deep neural networks and its key feature is the iterative selection of training data through a feedback loop between deep neural networks and any underlying standard optimization algorithm. Numerical examples for optimal control, parameter identification and shape optimization problems for PDEs are provided to demonstrate that ISMO significantly outperforms a standard deep neural network based surrogate optimization algorithm as well as standard optimization algorithms. (C) 2020 The Author(s). Published by Elsevier B.V.
机译:我们提出了一种新的主​​动学习算法,称为迭代代理模型优化(ISMO),用于PDE受限的优化问题的鲁棒和有效的数值近似。该算法基于深度神经网络,其关键特征是通过深神经网络和任何潜在的标准优化算法之间的反馈环路迭代的训练数据选择。提供了用于PDE的最佳控制,参数识别和形状优化问题的数值例证,以证明ISMO显着优于基于标准的深度神经网络的代理优化算法以及标准优化算法。 (c)2020提交人。由elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号