首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Six-DOF Spacecraft Optimal Trajectory Planning and Real-Time Attitude Control: A Deep Neural Network-Based Approach
【24h】

Six-DOF Spacecraft Optimal Trajectory Planning and Real-Time Attitude Control: A Deep Neural Network-Based Approach

机译:六自由度航天器最优轨迹规划与实时态度控制:基于深度神经网络的方法

获取原文
获取原文并翻译 | 示例

摘要

This brief presents an integrated trajectory planning and attitude control framework for six-degree-of-freedom (6-DOF) hypersonic vehicle (HV) reentry flight. The proposed framework utilizes a bilevel structure incorporating desensitized trajectory optimization and deep neural network (DNN)-based control. In the upper level, a trajectory data set containing optimal system control and state trajectories is generated, while in the lower level control system, DNNs are constructed and trained using the pregenerated trajectory ensemble in order to represent the functional relationship between the optimized system states and controls. These well-trained networks are then used to produce optimal feedback actions online. A detailed simulation analysis was performed to validate the real-time applicability and the optimality of the designed bilevel framework. Moreover, a comparative analysis was also carried out between the proposed DNN-driven controller and other optimization-based techniques existing in related works. Our results verify the reliability of using the proposed bilevel design for the control of HV reentry flight in real time.
机译:本简要介绍了六维自由度(6-DOF)超音速车辆(HV)ReEntry飞行的综合轨迹规划和姿态控制框架。所提出的框架利用包括脱敏轨迹优化和基于深度神经网络(DNN)的偏抗结构。在上层中,生成包含最佳系统控制和状态轨迹的轨迹数据集,而在较低级别控制系统中,使用预换轨迹集合构造和训练DNN,以表示优化系统状态和的功能关系控制。然后使用这些训练有素的网络在线生产最佳反馈措施。进行了详细的仿真分析,以验证实时适用性和设计的Bilevel框架的最优性。此外,在相关工程中提出的DNN驱动控制器和其他基于优化的技术之间还进行了比较分析。我们的结果验证了使用拟议的双脚设计来实时控制HV再入飞行的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号