首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Neural Control for MIMO Pure-Feedback Nonlinear Systems With Periodic Disturbances
【24h】

Adaptive Neural Control for MIMO Pure-Feedback Nonlinear Systems With Periodic Disturbances

机译:具有周期性干扰的MIMO纯反馈非线性系统的自适应神经控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an adaptive neural control design method is presented for a class of multiple-input-multiple-output (MIMO) pure-feedback nonlinear systems with periodically time-varying disturbances appearing nonlinearly in unknown nonaffine functions. The nonaffine functions do not need to be differentiable, and the bounded condition of unknown nonaffine functions is relaxed such that only a more general semibounded assumption is required as the controllability condition of the considered MIMO pure-feedback system. To facilitate the control design, the gain functions are designed to he continuous and positive with the bounds being unknown functions. Furthermore, for handling with the difficulty caused by these unknown bounds, several appropriate compact sets are defined to obtain the bounds of gain functions. By utilizing Lyapunov analysis, all the variables of the resulting closed-loop system are proven to be semiglobally uniformly ultimately bounded, and the tracking error can converge to an arbitrarily' small neighborhood around zero by choosing design parameters appropriately. The effectiveness of the proposed control algorithm is demonstrated by two simulations.
机译:在本文中,为一类多输入 - 多输出(MIMO)纯反馈非线性系统提供了一种自适应神经控制设计方法,其具有周期性的时变干扰,在未知的非共发函数中出现非线性。不需要可分辨不差的不需要函数,并且放宽未知的非共和功能的有界条件,使得仅需要更一般的半道发声的假设作为所考虑的MIMO纯反馈系统的可控性状态。为了便于控制设计,增益函数旨在与未知功能的界限连续和正常。此外,为了处理由这些未知界限引起的困难,定义了几个适当的紧凑型集以获得增益函数的界限。通过利用Lyapunov分析,证明由此产生的闭环系统的所有变量是半球均匀的最终界限,并且通过适当地选择设计参数,跟踪误差可以通过选择设计参数来收敛到任意的“小邻域”。所提出的控制算法的有效性由两种模拟证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号