首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Neural Control for MIMO Pure-Feedback Nonlinear Systems With Periodic Disturbances
【24h】

Adaptive Neural Control for MIMO Pure-Feedback Nonlinear Systems With Periodic Disturbances

机译:具有周期扰动的MIMO纯反馈非线性系统的自适应神经控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an adaptive neural control design method is presented for a class of multiple-input-multiple-output (MIMO) pure-feedback nonlinear systems with periodically time-varying disturbances appearing nonlinearly in unknown nonaffine functions. The nonaffine functions do not need to be differentiable, and the bounded condition of unknown nonaffine functions is relaxed such that only a more general semibounded assumption is required as the controllability condition of the considered MIMO pure-feedback system. To facilitate the control design, the gain functions are designed to he continuous and positive with the bounds being unknown functions. Furthermore, for handling with the difficulty caused by these unknown bounds, several appropriate compact sets are defined to obtain the bounds of gain functions. By utilizing Lyapunov analysis, all the variables of the resulting closed-loop system are proven to be semiglobally uniformly ultimately bounded, and the tracking error can converge to an arbitrarily' small neighborhood around zero by choosing design parameters appropriately. The effectiveness of the proposed control algorithm is demonstrated by two simulations.
机译:本文针对一类多输入多输出(MIMO)纯反馈非线性系统提出了一种自适应神经控制设计方法,该系统具有在未知非仿射函数中非线性地周期性出现的时变扰动。非仿射函数不需要是可微的,并且未知非仿射函数的有界条件被放宽,使得仅需要更一般的半界假设作为所考虑的MIMO纯反馈系统的可控制性条件。为了简化控制设计,增益函数被设计为连续且为正,边界为未知函数。此外,为了处理由这些未知边界引起的困难,定义了几个适当的紧集以获取增益函数的边界。通过利雅普诺夫分析,证明了所产生的闭环系统的所有变量都是半全局一致的最终有界的,并且通过适当选择设计参数,跟踪误差可以收敛到零附近的任意小邻域。通过两个仿真证明了所提出的控制算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号