首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Partial Diffusion Kalman Filtering for Distributed State Estimation in Multiagent Networks
【24h】

Partial Diffusion Kalman Filtering for Distributed State Estimation in Multiagent Networks

机译:多Agent网络中分布估计的局部扩散卡尔曼滤波。

获取原文
获取原文并翻译 | 示例

摘要

Many problems in multiagent networks can be solved through distributed learning (state estimation) of linear dynamical systems. In this paper, we develop a partial-diffusion Kalman filtering (PDKF) algorithm, as a fully distributed solution for state estimation in the multiagent networks with limited communication resources. In the PDKF algorithm, every agent (node) is allowed to share only a subset of its intermediate estimate vectors with its neighbors at each iteration, reducing the amount of internode communications. We analyze the stability of the PDKF algorithm and show that the algorithm is stable and convergent in both mean and mean-square senses. We also derive a closed-form expression for the steady-state mean-square deviation criterion. Furthermore, we show theoretically and by numerical examples that the PDKF algorithm provides a trade-off between the estimation performance and the communication cost that is extremely profitable.
机译:多主体网络中的许多问题都可以通过线性动力学系统的分布式学习(状态估计)来解决。在本文中,我们开发了一种部分扩散卡尔曼滤波(PDKF)算法,作为通信资源有限的多主体网络中状态估计的一种完全分布式解决方案。在PDKF算法中,每个代理(节点)在每次迭代时都只能与其邻居共享其中间估计矢量的子集,从而减少了节点间的通信量。我们分析了PDKF算法的稳定性,并表明该算法在均值和均方意义上均稳定且收敛。我们还为稳态均方差准则导出了一个封闭形式的表达式。此外,我们在理论上和通过数值示例表明,PDKF算法在估计性能和通信成本之间提供了一个折衷方案,这是非常有利可图的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号