首页> 外文期刊>Signal and Information Processing over Networks, IEEE Transactions on >Distributed Widely Linear Kalman Filtering for Frequency Estimation in Power Networks
【24h】

Distributed Widely Linear Kalman Filtering for Frequency Estimation in Power Networks

机译:电网中频率估计的分布式广泛线性卡尔曼滤波

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the growing need for robust and accurate frequency estimators at the low and medium-voltage distribution levels and the emergence of ubiquitous sensors networks for the smart grid, we introduce a distributed Kalman filtering scheme for frequency estimation. This is achieved by using widely linear state space models, which are capable of estimating the frequency under both balanced and unbalanced operating conditions. The proposed distributed augmented extended Kalman filter (D-ACEKF) exploits multiple measurements without imposing any constraints on the operating conditions at different parts of the network, while also accounting for the correlated and noncircular natures of real-world nodal disturbances. Case studies over a range of power system conditions illustrate the theoretical and practical advantages of the proposed methodology.
机译:出于对中低压配电级别上鲁棒且准确的频率估算器的需求不断增长以及智能电网无处不在的传感器网络的出现,我们引入了一种分布式卡尔曼滤波方案进行频率估算。这是通过使用广泛的线性状态空间模型实现的,该模型能够估计平衡和不平衡工作条件下的频率。所提出的分布式增强扩展卡尔曼滤波器(D-ACEKF)利用多种测量方法,而不会对网络不同部分的工作条件施加任何约束,同时还考虑了实际节点扰动的相关性和非圆形特性。在一系列电力系统条件下的案例研究说明了所提出方法的理论和实践优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号