首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Optimal Control for a Class of Nonlinear Systems: The Online Policy Iteration Approach
【24h】

Adaptive Optimal Control for a Class of Nonlinear Systems: The Online Policy Iteration Approach

机译:一类非线性系统的自适应最优控制:在线策略迭代法

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the online adaptive optimal controller design for a class of nonlinear systems through a novel policy iteration (PI) algorithm. By using the technique of neural network linear differential inclusion (LDI) to linearize the nonlinear terms in each iteration, the optimal law for controller design can be solved through the relevant algebraic Riccati equation (ARE) without using the system internal parameters. Based on PI approach, the adaptive optimal control algorithm is developed with the online linearization and the two-step iteration, i.e., policy evaluation and policy improvement. The convergence of the proposed PI algorithm is also proved. Finally, two numerical examples are given to illustrate the effectiveness and applicability of the proposed method.
机译:本文通过一种新颖的策略迭代算法研究了一类非线性系统的在线自适应最优控制器设计。通过使用神经网络线性微分包含(LDI)技术对每次迭代中的非线性项进行线性化,可以通过相关的代数Riccati方程(ARE)求解控制器设计的最佳律,而无需使用系统内部参数。基于PI方法,通过在线线性化和两步迭代(即策略评估和策略改进)开发了自适应最优控制算法。还证明了所提出的PI算法的收敛性。最后,通过两个数值例子说明了该方法的有效性和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号