首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A White-Box Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells
【24h】

A White-Box Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells

机译:用于电化学电池SoC估计的白盒等效神经网络电路模型

获取原文
获取原文并翻译 | 示例

摘要

Smart grids, microgrids, and pure electric powertrains are the key technologies for achieving the expected goals concerning the restraint of CO2 emissions and global warming. In this context, an effective use of electrochemical energy storage systems (ESSs) is mandatory. In particular, accurate state of charge (SoC) estimations are helpful for improving the ESS performances. To this aim, developing accurate models of electrochemical cells is necessary for implementing effective SoC estimators. Therefore, a novel neural network modeling technique is proposed in this paper. The main contribution consists in the development of a white-box neural design that provides helpful insights into the cell physics, together with a powerful nonlinear approximation capability, and a flexible system identification procedure. In order to do that, the system equations of a white-box equivalent circuit model (ECM) have been combined with computational intelligence techniques by approximating each circuit element with a dedicated neural network. The model performances have been analyzed in terms of model accuracy, SoC estimation effectiveness, and computational cost over two realistic data sets. Moreover, the proposed model has been compared with a white-box ECM and a gray-box neural network model. The results prove that the proposed modeling technique is able to provide useful improvements in the SoC estimation task with a competing computational cost.
机译:智能电网,微电网和纯电动动力总成是实现有关限制二氧化碳排放和全球变暖的预期目标的关键技术。在这种情况下,必须有效使用电化学储能系统(ESS)。特别是,准确的充电状态(SoC)估计有助于改善ESS性能。为此,为实现有效的SoC估算器,必须开发准确的电化学电池模型。因此,本文提出了一种新的神经网络建模技术。主要贡献在于开发了白盒神经设计,该设计可提供对细胞物理学的有益见解,并具有强大的非线性逼近能力和灵活的系统识别程序。为了做到这一点,白盒等效电路模型(ECM)的系统方程已经通过使用专用神经网络对每个电路元素进行了近似,并与计算智能技术相结合。已针对两个实际数据集在模型准确性,SoC估计有效性和计算成本方面对模型性能进行了分析。此外,将所提出的模型与白盒ECM和灰盒神经网络模型进行了比较。结果证明,所提出的建模技术能够以竞争的计算成本在SoC估计任务中提供有用的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号