首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Output Feedback Q-Learning Control for the Discrete-Time Linear Quadratic Regulator Problem
【24h】

Output Feedback Q-Learning Control for the Discrete-Time Linear Quadratic Regulator Problem

机译:离散线性二次调节器问题的输出反馈Q学习控制

获取原文
获取原文并翻译 | 示例

摘要

Approximate dynamic programming (ADP) and reinforcement learning (RL) have emerged as important tools in the design of optimal and adaptive control systems. Most of the existing RL and ADP methods make use of full-state feedback, a requirement that is often difficult to satisfy in practical applications. As a result, output feedback methods are more desirable as they relax this requirement. In this paper, we present a new output feedback-based Q-learning approach to solving the linear quadratic regulation (LQR) control problem for discrete-time systems. The proposed scheme is completely online in nature and works without requiring the system dynamics information. More specifically, a new representation of the LQR Q-function is developed in terms of the input-output data. Based on this new Q-function representation, output feedback LQR controllers are designed. We present two output feedback iterative Q-learning algorithms based on the policy iteration and the value iteration methods. This scheme has the advantage that it does not incur any excitation noise bias, and therefore, the need of using discounted cost functions is circumvented, which in turn ensures closed-loop stability. It is shown that the proposed algorithms converge to the solution of the LQR Riccati equation. A comprehensive simulation study is carried out, which illustrates the proposed scheme.
机译:近似动态规划(ADP)和强化学习(RL)已成为优化和自适应控制系统设计中的重要工具。大多数现有的RL和ADP方法都利用全状态反馈,这在实际应用中通常很难满足。结果,由于输出反馈方法放宽了这一要求,因此更加可取。在本文中,我们提出了一种新的基于输出反馈的Q学习方法,以解决离散时间系统的线性二次调节(LQR)控制问题。所提出的方案本质上是完全在线的,并且不需要系统动力学信息即可工作。更具体地说,根据输入输出数据开发了LQR Q函数的新表示形式。基于这种新的Q函数表示,设计了输出反馈LQR控制器。我们提出了两种基于策略迭代和值迭代方法的输出反馈迭代Q学习算法。该方案的优点在于它不会引起任何激励噪声偏差,因此避免了使用折扣成本函数的需求,从而又确保了闭环稳定性。结果表明,所提出的算法收敛于LQR Riccati方程的解。进行了全面的仿真研究,说明了所提出的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号