首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >On the Representational Power of Restricted Boltzmann Machines for Symmetric Functions and Boolean Functions
【24h】

On the Representational Power of Restricted Boltzmann Machines for Symmetric Functions and Boolean Functions

机译:关于对称函数和布尔函数的受限玻尔兹曼机的表示能力

获取原文
获取原文并翻译 | 示例

摘要

Restricted Boltzmann machines (RBMs) are used to build deep-belief networks that are widely thought to be one of the first effective deep learning neural networks. This paper studies the ability of RBMs to represent distributions over {0, 1}(n) via softplus/hardplus RBM networks. It is shown that any distribution whose density depends on the number of 1's in their input can be approximated with arbitrarily high accuracy by an RBM of size 2n + 1, which improves the result of a previous study by reducing the size from n(2) to 2n + 1. A theorem for representing partially symmetric Boolean functions by softplus RBM networks is established. Accordingly, the representational power of RBMs for distributions whose mass represents the Boolean functions is investigated in comparison with that of threshold circuits and polynomial threshold functions. It is shown that a distribution over {0, 1}(n) whose mass represents a Boolean function can be computed with a given margin delta by an RBM of size and parameters bounded by polynomials in n, if and only if it can be computed by a depth-2 threshold circuit with size and parameters bounded by polynomials in n.
机译:受限Boltzmann机器(RBM)用于构建深度信念网络,该网络被广泛认为是最早的有效深度学习神经网络之一。本文研究了RBM通过softplus / hardplus RBM网络表示{0,1}(n)上的分布的能力。结果表明,任何密度取决于其输入中1的数量的分布都可以通过大小为2n + 1的RBM以任意高精度近似,这通过减小n(2)的大小来改善先前研究的结果。到2n +1。建立了一个由softplus RBM网络表示部分对称布尔函数的定理。因此,与阈值电路和多项式阈值函数相比,研​​究了RBMs对质量表示布尔函数的分布的表示能力。结果表明,在质量为布尔函数的{0,1}(n)上,当且仅当可以计算时,可以通过给定的裕量增量通过大小为RBM并由n中的多项式为边界的参数来计算分布通过深度2阈值电路,其大小和参数由n中的多项式为界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号