首页> 外文期刊>Neural Network World >UNDERWATER ACOUSTIC SIGNAL ANALYSIS: PREPROCESSING AND CLASSIFICATION BY DEEP LEARNING
【24h】

UNDERWATER ACOUSTIC SIGNAL ANALYSIS: PREPROCESSING AND CLASSIFICATION BY DEEP LEARNING

机译:水下声学信号分析:深度学习预处理和分类

获取原文
获取原文并翻译 | 示例

摘要

The identification and classification is important parts of the research in the field like underwater acoustic signal processing. Recently, deep learning technology has been utilized to achieve good performance in the underwater acoustic signal case. On the other side, there are still some problems should be solved. The first one is that it cannot achieve high accuracy by the dataset that is transformed into audio spectrum. The second one is that the accuracy of classification on the dataset is still low, so that, it cannot satisfy the real demand. To solve those problems, we firstly evaluated four popular spectrums (Audio Spectrum, Image Histogram, Demon and LOFAR) for data preprocessing and selected the best one that is suitable for the neural networks (LeNet, ALEXNET, VGG16). Then, among these methods, we modified a neural network(LeNet) to fit the dataset that is transformed by the spectrum to improve the classification accuracy. The experimental result shows that the accuracy of our method can achieve 97.22 %, which is higher than existing methods and it met the expected target of practical application.
机译:识别和分类是水下声信号处理等领域的研究的重要部分。最近,已经利用了深度学习技术来实现水下声学信号情况的良好性能。在另一边,仍有一些问题应该解决。第一个是它无法通过转换为音频频谱的数据集来实现高精度。第二个是,数据集上分类的准确性仍然很低,因此,它不能满足真正的需求。为了解决这些问题,我们首先评估了四个流行的频谱(音频频谱,图像直方图,恶魔和洛杉矶),用于数据预处理,并选择适合神经网络(Lenet,AlexNet,VGG16)的最佳选择。然后,在这些方法中,我们修改了神经网络(Lenet)以适合由频谱转换的数据集以提高分类精度。实验结果表明,我们的方法的准确性可以达到97.22%,高于现有方法,符合实际应用的预期目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号