首页> 外文期刊>Neural Network World >TIME SERIES PREDICTION BY PARALLEL FEEDFORWARD PROCESS NEURAL NETWORK WITH TIME-VARIED INPUT AND OUPUT FUNCTIONS
【24h】

TIME SERIES PREDICTION BY PARALLEL FEEDFORWARD PROCESS NEURAL NETWORK WITH TIME-VARIED INPUT AND OUPUT FUNCTIONS

机译:具有时变输入和输出功能的并行前馈过程神经网络预测时间序列

获取原文
获取原文并翻译 | 示例

摘要

Time series prediction plays an important role in engineering applications. Artificial neural networks seem to be a useful tool to solve these problems. However, in real engineering, the inputs and outputs of many complicated systems are time-varied functions. Conventional artificial neural networks are not suitable to predicting time series in these systems directly. In order to overcome this limitation, a parallel feedforward process neural network (PFPNN) is proposed. The inputs and outputs of the PFPNN are time-varied functions, which makes it possible to predict time series directly. A corresponding learning algorithm for the PFPNN is developed. To simplify this learning algorithm, appropriate orthogonal basis functions are selected to expand the input functions, output functions and network weight functions. The effectiveness of the PFPNN and its learning algorithm is proved by the Mackey-Glass time series prediction. Finally, the PFPNN is utilized to predict exhaust gas temperature time series in aircraft engine condition monitoring, and the simulation test results also indicate that the PFPNN has a faster convergence speed and higher accuracy than the same scale multilayer feedforward process neural network.
机译:时间序列预测在工程应用中起着重要作用。人工神经网络似乎是解决这些问题的有用工具。但是,在实际工程中,许多复杂系统的输入和输出都是时变函数。传统的人工神经网络不适用于直接预测这些系统中的时间序列。为了克服这一限制,提出了一种并行前馈过程神经网络(PFPNN)。 PFPNN的输入和输出是随时间变化的函数,因此可以直接预测时间序列。开发了针对PFPNN的相应学习算法。为了简化该学习算法,选择适当的正交基函数以扩展输入函数,输出函数和网络权重函数。 Mackey-Glass时间序列预测证明了PFPNN及其学习算法的有效性。最后,利用PFPNN预测飞机发动机状态监测中的废气温度时间序列,仿真测试结果还表明,与相同规模的多层前馈过程神经网络相比,PFPNN具有更快的收敛速度和更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号