首页> 外文期刊>Neural Network World >USING THE LISP-MINER SYSTEM FOR CREDIT RISK ASSESSMENT
【24h】

USING THE LISP-MINER SYSTEM FOR CREDIT RISK ASSESSMENT

机译:使用LISP-MINER系统进行信用风险评估

获取原文
获取原文并翻译 | 示例

摘要

Credit risk assessment, credit scoring and loan applications approval are one of the typical tasks that can be performed using machine learning or data mining techniques. From this viewpoint, loan applications evaluation is a classification task, in which the final decision can be either a crisp yeso decision about the loan or a numeric score expressing the financial standing of the applicant. The knowledge to be used is inferred from data about past decisions. These data usually consist of both socio-demographic and economic characteristics of the applicant (e.g., age, income, and deposit), the characteristics of the loan, and the loan approval decision. A number of machine learning algorithms can be used for this purpose. In this paper we show how this task can be performed using the LISp-Miner system, a tool that is under development at the University of Economics, Prague. LISp-Miner is primarily focused on mining for various types of association rules, but unlike classical association rules proposed by Agrawal, LISp-Miner introduces a greater variety of different types of relations between the left-hand and right-hand sides of a rule. Two other procedures that can be used for classification task are implemented in LISp-Miner as well. We describe the 4ft-Miner and KEX procedures and show how they can be used to analyze data related to loan applications. We also compare the results obtained using the presented algorithms with results from standard rule-learning methods.
机译:信用风险评估,信用评分和贷款申请批准是可以使用机器学习或数据挖掘技术执行的典型任务之一。从这个角度看,贷款申请评估是一项分类任务,其中最终决定可以是关于贷款的明确决定,也可以是表示申请人财务状况的数字评分。从过去的决策数据中推断出要使用的知识。这些数据通常包括申请人的社会人口统计学和经济特征(例如年龄,收入和存款),贷款特征以及贷款批准决定。许多机器学习算法可用于此目的。在本文中,我们展示了如何使用LISp-Miner系统执行此任务,LISp-Miner系统是布拉格经济大学正在开发的工具。 LISp-Miner主要专注于各种类型的关联规则的挖掘,但是与Agrawal提出的经典关联规则不同,LISp-Miner在规则的左手边和右手边之间引入了更多种不同类型的关系。 LISp-Miner中还实现了可用于分类任务的其他两个过程。我们将介绍4ft-Miner和KEX程序,并说明如何将其用于分析与贷款申请相关的数据。我们还将使用提出的算法获得的结果与标准规则学习方法的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号