首页> 外文期刊>Neural Computing and Applications >Reliable optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks
【24h】

Reliable optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks

机译:使用蚁群优化和自举聚合神经网络对反应性聚合物复合材料成型过程进行可靠的优化控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a study on the optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks. In order to overcome the difficulties in developing accurate mechanistic models for reactive polymer composite moulding processes, neural network models are developed from process operation data. Bootstrap aggregated neural networks are used to enhance model prediction accuracy and reliability. Ant colony optimisation is able to cope with optimisation problems with multiple local optima and is able to find the global optimum. Ant colony optimisation is used in this study to find the optimal curing temperature profile. In order to enhance the reliability of the optimisation control policy, model prediction confidence bound offered by bootstrap aggregated neural networks is incorporated in the optimisation objective function so that unreliable predictions are penalised. The proposed method is tested on a simulated reactive polymer composite moulding process.
机译:本文提出了一种利用蚁群优化和自举聚合神经网络对反应性聚合物复合成型工艺进行优化控制的研究。为了克服为反应性聚合物复合材料成型工艺开发精确的机械模型的困难,从工艺操作数据中开发了神经网络模型。 Bootstrap聚合神经网络用于增强模型预测的准确性和可靠性。蚁群优化能够解决具有多个局部最优的优化问题,并且能够找到全局最优。在这项研究中使用蚁群优化来找到最佳的固化温度曲线。为了提高优化控制策略的可靠性,将自举聚合神经网络提供的模型预测置信范围结合到优化目标函数中,以惩罚不可靠的预测。所提出的方法在模拟的反应性聚合物复合成型工艺上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号