首页> 外文期刊>Neural Computing and Applications >The coordinate descent method with stochastic optimization for linear support vector machines
【24h】

The coordinate descent method with stochastic optimization for linear support vector machines

机译:线性支持向量机随机优化的协调下降方法

获取原文
获取原文并翻译 | 示例

摘要

Optimizing the training speed of support vector machines (SVMs) is one of the most important topics in the SVM research. In this paper, we propose an algorithm in which the size of working set is reduced to one in order to obtain a faster training speed. Instead of the complex heuristic criteria, the random order for selecting the elements into the working set is adopted. The proposed algorithm shows a better performance in linear SVM training, especially in the large-scale scenario.
机译:优化支持向量机(SVM)的训练速度是SVM研究中最重要的主题之一。在本文中,我们提出了一种算法,其中工作集的大小减小到一个,以便获得更快的训练速度。代替复杂的启发式标准,采用了将元素选择到工作集中的随机顺序。所提出的算法在线性SVM训练中表现出更好的性能,尤其是在大规模场景中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号