首页> 外文期刊>Computational Optimization and Applications >A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training
【24h】

A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training

机译:线性约束平滑优化和支持向量机训练的坐标梯度下降法

获取原文
获取原文并翻译 | 示例

摘要

Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. We establish global convergence and, under a local error bound assumption (which is satisfied by the SVM QP), linear rate of convergence for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We show that, for the SVM QP with n variables, this rule can be implemented in O(n) operations using Rockafellar’s notion of conformal realization. Thus, for SVM training, our method requires only O(n) operations per iteration and, in contrast to existing decomposition methods, achieves linear convergence without additional assumptions. We report our numerical experience with the method on some large SVM QP arising from two-class data classification. Our experience suggests that the method can be efficient for SVM training with nonlinear kernel.
机译:支持向量机(SVM)训练可被视为具有约束和单个线性等式约束的大型二次程序(QP)。我们提出了一种(块)坐标梯度下降方法来解决该问题,并且更一般地,提出一种线性约束的平滑优化方法。我们的方法与当前支持SVM训练的分解方法密切相关。我们建立全局收敛性,并在局部误差范围假设(由SVM QP满足)下,当通过高斯-绍斯韦尔型规则选择坐标块以确保足够的下降时,我们的方法的线性收敛率。我们证明,对于具有n个变量的SVM QP,可以使用Rockafellar的保形实现概念在O(n)操作中实施此规则。因此,对于SVM训练,我们的方法每次迭代仅需要O(n)个操作,并且与现有的分解方法相比,无需其他假设即可实现线性收敛。我们报告了该方法的数值经验,该方法对源自两类数据分类的某些大型SVM QP进行了描述。我们的经验表明,该方法对于非线性核的SVM训练可能是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号