首页> 外文期刊>Neural Computing and Applications >Neural network-based self-learning control for power transmission line deicing robot
【24h】

Neural network-based self-learning control for power transmission line deicing robot

机译:输电线路除冰机器人的基于神经网络的自学习控制

获取原文
获取原文并翻译 | 示例

摘要

Recently, the application of the maintenance transmission line robot has been very popular in the power industry. However, difficulties in the control of maintenance transmission line robot exist due to multiple nonlinearities, plant parameter variations and external disturbances. This paper investigates the possibility of using neural network as a promising self-learning control alternative for the control problem of inspection and deicing transmission line robot. We first discuss the mechanical structure, as well as dynamic model of a deicing robot. And then, a neural network-based self-learning control strategy consists of a fuzzy neural network controller and an ELM-based single-layer-feedback neural networks identifier are proposed for this deicing transmission line robot. Both the structure and the learning algorithm of the control system are presented. The proposed controller is verified by computer simulations and experiments.
机译:近年来,维护传输线机器人的应用在电力行业中非常流行。然而,由于多重非线性,工厂参数变化和外部干扰,维护传输线机器人的控制存在困难。本文研究了将神经网络用作检查和除冰传输线机器人控制问题的有希望的自学习控制替代方案的可能性。我们首先讨论除冰机器人的机械结构以及动力学模型。然后,提出了一种基于模糊神经网络控制器的神经网络自学习控制策略,并为该除冰输电线路机器人提出了一种基于ELM的单层反馈神经网络识别器。给出了控制系统的结构和学习算法。通过计算机仿真和实验验证了所提出的控制器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号