机译:基于神经网络的迭代GDHP方法解决一类带有控制约束的非线性最优控制问题
Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences">(1);
Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences">(1);
Department of Electrical and Computer Engineering University of Illinois">(2);
Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences">(1);
Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences">(1);
Key Laboratory of Complex Systems and Intelligence Science Institute of Automation Chinese Academy of Sciences">(1);
Adaptive critic designs; Adaptive dynamic programming; Approximate dynamic programming; Neural dynamic programming; Neural networks; Optimal control; Reinforcement learning;
机译:基于神经网络的迭代GDHP方法解决一类带有控制约束的非线性最优控制问题
机译:基于迭代GDHP的一类离散时间非线性系统的近似最优跟踪控制
机译:一类具有控制约束的离散仿射非线性系统的基于神经网络的近最优控制
机译:基于神经网络的一类带有控制约束的离散时间非线性离散系统的最优控制
机译:一种求解非线性最优控制中的Hamilton-Jacobi方程的分解方法。
机译:一类参数化非线性的超稳定反馈控制器的设计。控制流行病模型的两个应用示例
机译:基于神经网络的一类具有控制约束的离散时间仿射非线性系统的近似最优控制