首页> 外文期刊>Neurocomputing >Iterative GDHP-based approximate optimal tracking control for a class of discrete-time nonlinear systems
【24h】

Iterative GDHP-based approximate optimal tracking control for a class of discrete-time nonlinear systems

机译:基于迭代GDHP的一类离散时间非线性系统的近似最优跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an iterative globalized dual heuristic programming (GDHP) method is developed to deal with the approximate optimal tracking control for a class of discrete-time nonlinear systems. The optimal tracking control problem is formulated by solving the discrete-time Hamilton-Jacobi-Bellman (DTHJB) equation. Then, it is approximately solved by the developed iterative GDHP-based algorithm with convergence analysis. The iterative GDHP algorithm is implemented by constructing three neural networks to approximate the error system dynamics, the cost function with its derivative, and the control policy in each iteration, respectively. The information of the cost function and its derivative is provided during iteration calculation. Two simulation examples are investigated to verify the performance of the proposed approximate optimal tracking control approach. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了解决一类离散时间非线性系统的近似最优跟踪控制问题,本文提出了一种迭代全局双重启发式编程(GDHP)方法。通过求解离散时间Hamilton-Jacobi-Bellman(DTHJB)方程来制定最佳跟踪控制问题。然后,通过开发的基于GDHP的迭代算法和收敛性分析来近似解决。迭代GDHP算法是通过构造三个神经网络来实现的,分别近似误差系统动力学,成本函数及其导数以及每次迭代中的控制策略。在迭代计算期间会提供成本函数及其导数的信息。研究了两个仿真示例,以验证所提出的近似最佳跟踪控制方法的性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号