首页> 外文期刊>Neural Computing and Applications >Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm
【24h】

Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm

机译:通过进化的人工神经网络与遗传算法,差分进化和分布估计算法进行时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

Time series forecasting is an important tool to support both individual and organizational decisions (e.g. planning production resources). In recent years, a large literature has evolved on the use of evolutionary artificial neural networks (EANN) in many forecasting applications. Evolving neural networks are particularly appealing because of their ability to model an unspecified nonlinear relationship between time series variables. In this work, two new approaches of a previous system, automatic design of artificial neural networks (ADANN) applied to forecast time series, are tackled. In ADANN, the automatic process to design artificial neural networks was carried out by a genetic algorithm (GA). This paper evaluates three methods to evolve neural networks architectures, one carried out with genetic algorithm, a second one carried out with differential evolution algorithm (DE) and the last one using estimation of distribution algorithms (EDA). A comparative study among these three methods with a set of referenced time series will be shown. In this paper, we also compare ADANN forecasting ability against a forecasting tool called Forecast Pro® (FP) software, using five benchmark time series. The object of this study is to try to improve the final forecasting getting an accurate system.
机译:时间序列预测是支持个人和组织决策(例如计划生产资源)的重要工具。近年来,关于进化人工神经网络(EANN)在许多预测应用中的使用,已有大量文献发展。不断发展的神经网络特别吸引人,因为它们能够对时间序列变量之间的不确定非线性关系建模。在这项工作中,解决了以前系统的两种新方法,即应用于预测时间序列的人工神经网络(ADANN)的自动设计。在ADANN中,通过遗传算法(GA)进行设计人工神经网络的自动过程。本文评估了三种进化神经网络体系结构的方法,一种是通过遗传算法实现的,另一种是使用差分进化算法(DE)进行的,最后一种使用分布估计算法(EDA)。将显示这三种方法与一组参考时间序列的比较研究。在本文中,我们还使用五个基准时间序列将ADANN的预测能力与称为ForecastPro®(FP)的预测工具进行了比较。本研究的目的是尝试改进最终的预测,以得到一个准确的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号