首页> 外文期刊>Neural Computing & Applications >Chaotic neural network controlled by particle swarm with decaying chaotic inertia weight for pattern recognition
【24h】

Chaotic neural network controlled by particle swarm with decaying chaotic inertia weight for pattern recognition

机译:粒子群控制的混沌惯性权重的混沌神经网络用于模式识别

获取原文
获取原文并翻译 | 示例

摘要

This study introduces a new type of chaotic neural network, which is built upon perturbed Duffing oscillator. The neurons in this network behave collectively based on a modified version of Duffing map. The proposed neural processor can act chaotically at some areas of the state space. The network has some parameters, which can be adjusted for the system to behave either chaotically or periodically. This nonlinear network adopts the bifurcating behavior of the chaotic Duffing map for the most covered search in the neuronal search space. The neuron’s search space is controlled by swarming in the parameter space to settle the parameters of the network into the critical parameters. Swarming of the parameters is based on particle swarm optimization heuristic. The modified particle swarm adopts a decaying inertia weight based on chaotic logistic map to fast settle down into the attractors of periodic solutions. At last, the swarm-controlled neurochaotic processor is applied to build three models to control parameters of the network. Each model is trained to recognize a set of binary patterns that are as the form of alphabetic letters as a classical pattern recognition problem. A comparison study is then conducted among these three models, Hopfield network and a modified Hopfield model, which demonstrate all three models outperform Hopfiled model and are competitive and in most cases outperform the modified Hopfield model.
机译:本研究介绍了一种新型的基于扰动的Duffing振荡器的混沌神经网络。该网络中的神经元基于Duffing映射的修改版本共同起作用。所提出的神经处理器可以在状态空间的某些区域混乱地起作用。网络具有一些参数,可以对这些参数进行调整,以使系统表现为混乱或周期性。该非线性网络采用混沌Duffing映射的分叉行为来进行神经元搜索空间中最广泛的搜索。通过在参数空间中聚集来控制神经元的搜索空间,以将网络参数设置为关键参数。参数的分组基于粒子群优化启发式算法。改进的粒子群算法采用基于混沌逻辑映射的衰减惯性权重,快速沉降到周期解的吸引子中。最后,采用群体控制的神经混沌处理器建立了三种控制网络参数的模型。每个模型都经过训练以识别一组二进制模式,这些二进制模式作为经典模式识别问题的字母形式。然后在这三个模型(Hopfield网络和修改后的Hopfield模型)之间进行了比较研究,证明了这三个模型均优于Hopfiled模型,并且具有竞争性,并且在大多数情况下都优于修改后的Hopfield模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号