首页> 外文期刊>Neural Computing & Applications >A face emotion tree structure representation with probabilistic recursive neural network modeling
【24h】

A face emotion tree structure representation with probabilistic recursive neural network modeling

机译:基于概率递归神经网络建模的人脸情感树结构表示

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a novel structural approach to recognize the human facial features for emotion recognition. Conventionally, features extracted from facial images are represented by relatively poor representations, such as arrays or sequences, with a static data structure. In this study, we propose to extract facial expression features vectors as Localized Gabor Features (LGF) and then transform these feature vectors into FacE Emotion Tree Structures (FEETS) representation. It is an extension of the Human Face Tree Structures (HFTS) representation presented in (Cho and Wong in Lecture notes in computer science, pp 1245–1254, 2005). This facial representation is able to simulate as human perceiving the real human face and both the entities and relationship could contribute to the facial expression features. Moreover, a new structural connectionist architecture based on a probabilistic approach to adaptive processing of data structures is presented. The so-called probabilistic based recursive neural network (PRNN) model extended from Frasconi et al. (IEEE Trans Neural Netw 9:768–785, 1998) is developed to train and recognize human emotions by generalizing the FEETS representation. For empirical studies, we benchmarked our emotion recognition approach against other well known classifiers. Using the public domain databases, such as Japanese Female Facial Expression (JAFFE) (Lyons et al. in IEEE Trans Pattern Anal Mach Intell 21(12):1357–1362, 1999; Lyons et al. in third IEEE international conference on automatic face and gesture recognition, 1998) database and Cohn–Kanade AU-Coded Facial Expression (CMU) Database (Cohn et al. in 7th European conference on facial expression measurement and meaning, 1997), our proposed system might obtain an accuracy of about 85–95% for subject-dependent and subject-independent conditions. Moreover, by testing images having artifacts, the proposed model significantly supports the robust capability to perform facial emotion recognition. Keywords Human emotion recognition - Adaptive processing of data structures - Probabilistic recursive neural network - Gaussian mixture model - Facial expression
机译:本文介绍了一种新颖的结构方法来识别人脸特征以进行情感识别。传统上,从面部图像提取的特征由具有静态数据结构的相对差的表示来表示,例如阵列或序列。在这项研究中,我们建议提取面部表情特征向量作为局部Gabor特征(LGF),然后将这些特征向量转换为FacE情感树结构(FEETS)表示形式。它是对人脸树结构(HFTS)表示形式的扩展(在2005年,Cho和Wong在计算机科学讲座笔记中,第1245–1254页)。该面部表示能够像人类感知真实的人脸一样模拟,并且实体和关系都可以有助于面部表情特征。此外,提出了一种基于概率方法对数据结构进行自适应处理的新结构连接主义体系结构。 Frasconi等人扩展了所谓的基于概率的递归神经网络(PRNN)模型。 (IEEE Trans Neural Netw 9:768-785,1998)被开发来通过泛化FEETS表示来训练和识别人的情绪。对于经验研究,我们将情绪识别方法与其他知名分类器进行了基准比较。使用公共领域数据库,例如日本女性面部表情(JAFFE)(Lyons等人,在IEEE Trans Pattern Anal Mach Intell 21(12):1357–1362,1999; Lyons等人,在第三届IEEE国际自动面部会议上和手势识别,1998年)数据库和Cohn–Kanade AU编码的面部表情(CMU)数据库(Cohn等人在第七届欧洲面部表情测量和意义会议上,1997年),我们提出的系统可能会获得大约85– 95%用于受试者相关和受试者独立条件。此外,通过测试具有伪影的图像,提出的模型显着支持了执行面部情感识别的鲁棒能力。关键词人类情感识别数据结构的自适应处理概率递归神经网络高斯混合模型表情

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号