首页> 外文期刊>ACM transactions on intelligent systems and technology >An Attention-based Rumor Detection Model with Tree-structured Recursive Neural Networks
【24h】

An Attention-based Rumor Detection Model with Tree-structured Recursive Neural Networks

机译:具有树结构递归神经网络的基于注意力的谣言检测模型

获取原文
获取原文并翻译 | 示例

摘要

Rumor spread in social media severely jeopardizes the credibility of online content. Thus, automatic debunking of rumors is of great importance to keep social media a healthy environment. While facing a dubious claim, people often dispute its truthfulness sporadically in their posts containing various cues, which can form useful evidence with long-distance dependencies. In this work, we propose to learn discriminative features from microblog posts by following their non-sequential propagation structure and generate more powerful representations for identifying rumors. For modeling non-sequential structure, we first represent the diffusion of microblog posts with propagation trees, which provide valuable clues on how a claim in the original post is transmitted and developed over time. We then present a bottom-up and a top-down tree-structured models based on Recursive Neural Networks (RvNN) for rumor representation learning and classification, which naturally conform to the message propagation process in microblogs. To enhance the rumor representation learning, we reveal that effective rumor detection is highly related to finding evidential posts, e.g., the posts expressing specific attitude towards the veracity of a claim, as an extension of the previous RvNN-based detection models that treat every post equally. For this reason, we design discriminative attention mechanisms for the RvNN-based models to selectively attend on the subset of evidential posts during the bottom-up/top-down recursive composition. Experimental results on four datasets collected from real-world microblog platforms confirm that (1) our RvNN-based models achieve much better rumor detection and classification performance than state-of-the-art approaches; (2) the attention mechanisms for focusing on evidential posts can further improve the performance of our RvNN-based method; and (3) our approach possesses superior capacity on detecting rumors at a very early stage.
机译:谣言在社交媒体中传播严重危及在线内容的可信度。因此,谣言的自动揭穿是非常重视,使社交媒体保持健康的环境。在面临有辱人士的主张时,人们经常在包含各种提示的帖子中偶尔派对偶然地争霸,这可以形成具有远程依赖性的有用证据。在这项工作中,我们建议通过遵循它们的非顺序传播结构来学习微博柱的歧视特征,并产生更强大的识别谣言的表示。对于非顺序结构建模,我们首先代表微博柱的扩散与传播树,这提供了关于如何随时间传输和开发原始帖子中索赔的有价值的线索。然后,我们提出了基于递归神经网络(RVNN)的自下而上的树结构模型,用于谣言表示学习和分类,其自然符合微博中的消息传播过程。为了增强谣言表示学习,我们揭示了有效的谣言检测与寻找证据帖子的高度相关,例如,表达索赔的真实态度的特定态度的帖子,作为治疗每个帖子的先前RVNN的检测模型的扩展一样。因此,我们设计基于RVNN的模型的鉴别性注意机制,以在自下而上/自上而下的递归组合物期间选择性地参加证据柱的子集。从现实世界微博平台收集的四个数据集的实验结果证实(1)基于RVNN的模型实现了比最先进的方法更好的谣言检测和分类性能; (2)专注于证据岗位的关注机制可以进一步提高基于RVNN的方法的性能; (3)我们的方法在很早的阶段检测谣言具有卓越的容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号