机译:学习脑电动力学与耦合的低维非线性振荡器和深度复发网络
Departamento de Fisica FCEyN UBA and IFIBA CONICET 1428 Buenos Aires Argentina;
Mila–Quebec Artificial Intelligence Institute and CHU Sainte-Justine Research Center Department of Psychiatry Universitede Montreal Montreal H3A OE8 Canada;
University of Washington Seattle WA 98195 U.S.A.;
University of Washington Seattle WA 98195 U.S.A.;
Mila–Quebec Artificial Intelligence Institute Universitede Montreal Montreal H3A OE8 Canada;
IBM T. J. Watson Research Center Yorktown Heights NY 10598 U.S.A.;
IBM T. J. Watson Research Center Yorktown Heights NY 10598 U.S.A.;
Mila–Quebec Artificial Intelligence Institute Universitede Montreal Montreal H3A OE8 Canada;
MIT-IBM Watson AI Lab Cambridge MA 02139 U.S.A.;
Departamento de Fisica FCEyN UBA and IFIBA CONICET 1428 Buenos Aires Argentina;
IBM T. J. Watson Research Center Yorktown Heights NY 10598 U.S.A.;
Mila–Quebec Artificial Intelligence Institute Universite de Montreal Montreal H3A OE8 Canada;
机译:增强耦合非线性振荡器老化网络中的动态鲁棒性
机译:结合细胞神经网络和耦合的非线性振荡器范例的新方法,涉及相关的分叉分析,可在动态变化的视觉环境中增强图像对比度
机译:耦合离散 - 连续振荡器非自治网络的非线性动力学
机译:递归神经网络中编码和学习的低维动力学
机译:基于信息的递归线性网络和具有S形非线性的递归网络的控制
机译:深入学习可解释的EEG模式作为动态的时空集群和脑卒中尖峰神经网络中的规则
机译:用耦合的低维非线性振荡器和深度复发网络学习脑动力学