首页> 外文期刊>Neural computation >Learning Brain Dynamics With Coupled Low-Dimensional Nonlinear Oscillators and Deep Recurrent Networks
【24h】

Learning Brain Dynamics With Coupled Low-Dimensional Nonlinear Oscillators and Deep Recurrent Networks

机译:学习脑电动力学与耦合的低维非线性振荡器和深度复发网络

获取原文
获取原文并翻译 | 示例

摘要

Many natural systems, especially biological ones, exhibit complex multivariate nonlinear dynamical behaviors that can be hard to capture by linear autoregressive models. On the other hand, generic nonlinear models such as deep recurrent neural networks often require large amounts of training data, not always available in domains such as brain imaging; also, they often lack interpretability. Domain knowledge about the types of dynamics typically observed in such systems, such as a certain type of dynamical systems models, could complement purely data-driven techniques by providing a good prior. In this work, we consider a class of ordinary differential equation (ODE) models known as van der Pol (VDP) oscil lators and evaluate their ability to capture a low-dimensional representation of neural activity measured by different brain imaging modalities, such as calcium imaging (CaI) and fMRI, in different living organisms: larval zebrafish, rat, and human. We develop a novel and efficient approach to the nontrivial problem of parameters estimation for a network of coupled dynamical systems from multivariate data and demonstrate that the resulting VDP models are both accurate and interpretable, as VDP’s coupling matrix reveals anatomically meaningful excitatory and inhibitory interactions across different brain subsystems. VDP outperforms linear autoregressive models (VAR) in terms of both the data fit accuracy and the quality of insight provided by the coupling matrices and often tends to generalize better to unseen data when predicting future brain activity, being comparable to and sometimes better than the recurrent neural networks (LSTMs). Finally, we demonstrate that our (generative) VDP model can also serve as a data-augmentation tool leading to marked improvements in predictive accuracy of recurrent neural networks. Thus, our work contributes to both basic and applied dimensions of neuroimaging: gaining scientific insights and improving brainbased predictive models, an area of potentially high practical importance in clinical diagnosis and neurotechnology.
机译:许多自然系统,尤其是生物学系统,表现出复杂的多变量非线性动力学行为,这可能很难通过线性自回归模型捕获。另一方面,诸如深度经常性神经网络的通用非线性模型通常需要大量的训练数据,并不总是在脑成像等域中提供;此外,他们经常缺乏解释性。关于在这种系统中通常观察到的动态类型的域知识,例如某种类型的动态系统模型,可以通过提供良好的先前来补充纯粹的数据驱动技术。在这项工作中,我们考虑一类称为van der Pol(VDP)诺斯氏植物的常微分方程(ODE)模型,并评估它们捕获由不同脑成像模型(例如钙)测量的神经活动的低维表示的能力成像(CAI)和FMRI,在不同的生物体中:幼虫斑马鱼,大鼠和人。我们开发了一种新颖的和有效的方法,以实现来自多变量数据的耦合动态系统网络的参数估计的非竞争问题,并证明所得到的VDP模型既准确又可解释,因为VDP的耦合矩阵揭示了对不同的解剖学有意义的兴奋性和抑制性相互作用脑子系统。 VDP在耦合矩阵提供的数据适合精度和洞察力的质量方面优于线性自回归模型(VAR),并且通常在预测未来的大脑活动时往往更好地概括到未经经济的数据,与经常性更好神经网络(LSTMS)。最后,我们证明我们的(生成)VDP模型也可以作为数据增强工具,导致经常性神经网络的预测准确性显着改善。因此,我们的工作有助于神经影像的基本和应用尺寸:获得科学洞察力和改善脑卒中的预测模型,这是临床诊断和神经技术的潜在高实际重要性的领域。

著录项

  • 来源
    《Neural computation》 |2021年第8期|2087-2127|共41页
  • 作者单位

    Departamento de Fisica FCEyN UBA and IFIBA CONICET 1428 Buenos Aires Argentina;

    Mila–Quebec Artificial Intelligence Institute and CHU Sainte-Justine Research Center Department of Psychiatry Universitede Montreal Montreal H3A OE8 Canada;

    University of Washington Seattle WA 98195 U.S.A.;

    University of Washington Seattle WA 98195 U.S.A.;

    Mila–Quebec Artificial Intelligence Institute Universitede Montreal Montreal H3A OE8 Canada;

    IBM T. J. Watson Research Center Yorktown Heights NY 10598 U.S.A.;

    IBM T. J. Watson Research Center Yorktown Heights NY 10598 U.S.A.;

    Mila–Quebec Artificial Intelligence Institute Universitede Montreal Montreal H3A OE8 Canada;

    MIT-IBM Watson AI Lab Cambridge MA 02139 U.S.A.;

    Departamento de Fisica FCEyN UBA and IFIBA CONICET 1428 Buenos Aires Argentina;

    IBM T. J. Watson Research Center Yorktown Heights NY 10598 U.S.A.;

    Mila–Quebec Artificial Intelligence Institute Universite de Montreal Montreal H3A OE8 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号