首页> 外文期刊>Neural computation >Performance Limitations in Sensorimotor Control: Trade-Offs Between Neural Computation and Accuracy in Tracking Fast Movements
【24h】

Performance Limitations in Sensorimotor Control: Trade-Offs Between Neural Computation and Accuracy in Tracking Fast Movements

机译:感觉运动控制中的性能限制:神经计算和跟踪快速运动的精度之间的权衡。

获取原文
获取原文并翻译 | 示例

摘要

The ability to move fast and accurately track moving objects is fundamentally constrained by the biophysics of neurons and dynamics of the muscles involved. Yet the corresponding trade-offs between these factors and tracking motor commands have not been rigorously quantified. We use feedback control principles to quantify performance limitations of the sensorimotor control system (SCS) to track fast periodic movements. We show that (1) linear models of the SCS fail to predict known undesirable phenomena, including skipped cycles, overshoot and undershoot, produced when tracking signals in the “fast regime,” while nonlinear pulsatile control models can predict such undesirable phenomena, and (2) tools from nonlinear control theory allow us to characterize fundamental limitations in this fast regime. Using a validated and tractable nonlinear model of the SCS, we derive an analytical upper bound on frequencies that the SCS model can reliably track before producing such undesirable phenomena as a function of the neurons’ biophysical constraints and muscle dynamics. The performance limitations derived here have important implications in sensorimotor control. For example, if the primary motor cortex is compromised due to disease or damage, the theory suggests ways to manipulate muscle dynamics by adding the necessary compensatory forces using an assistive neuroprosthetic device to restore motor performance and, more important, fast and agile movements. Just how one should compensate can be informed by our SCS model and the theory developed here.
机译:快速准确地跟踪运动对象的能力从根本上受到了神经元的生物物理学和所涉及的肌肉动力学的限制。然而,尚未严格量化这些因素与跟踪电动机命令之间的相应权衡。我们使用反馈控制原理来量化感觉运动控制系统(SCS)的性能限制,以跟踪快速的周期性运动。我们发现(1)SCS的线性模型无法预测在“快速状态”下跟踪信号时产生的已知不良现象,包括跳频,过冲和下冲,而非线性脉动控制模型可以预测此类不良现象,并且( 2)非线性控制理论的工具使我们能够表征这种快速状态下的基本局限性。使用经过验证且易于处理的SCS非线性模型,我们得出了SCS模型可以可靠地跟踪的频率的分析上限,然后根据神经元的生物物理约束和肌肉动力学,产生不希望的现象。此处得出的性能限制在感觉运动控制中具有重要意义。例如,如果原发性运动皮层由于疾病或损害而受损,则该理论提出了通过使用辅助神经修复设备添加必要的补偿力来恢复运动性能以及更重要的快速敏捷运动的方式来操纵肌肉动力学的方法。可以通过我们的SCS模型和此处开发的理论来告知应该如何补偿。

著录项

  • 来源
    《Neural computation》 |2020年第5期|865-886|共22页
  • 作者单位

    Department of Electrical Engineering and Computer Sciences MIT Cambridge MA 02139 U.S.A.;

    Department of Biomedical Engineering Johns Hopkins University Baltimore MD 21210 U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号