首页> 外文期刊>Neural computation >Multi-Input, Multi-Output NeuronalMode Network Approach to Modeling the Encoding Dynamics and Functional Connectivity of Neural Systems
【24h】

Multi-Input, Multi-Output NeuronalMode Network Approach to Modeling the Encoding Dynamics and Functional Connectivity of Neural Systems

机译:多输入多输出NeuronalMode网络方法对神经系统的编码动力学和功能连通性建模

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a novel method, multi-input, multi-output neuronal mode network (MIMO-NMN), for modeling encoding dynamics and functional connectivity in neural ensembles such as the hippocampus. Compared with conventional approaches such as the Volterra-Wiener model, linear-nonlinear-cascade (LNC) model, and generalized linear model (GLM), the NMN has several advantages in terms of estimation accuracy, model interpretation, and functional connectivity analysis. We point out the limitations of current neural spike modeling methods, especially the estimation biases caused by the imbalanced class problem when the number of zeros is significantly larger than ones in the spike data. We use synthetic data to test the performance of NMN with a comparison of the traditional methods, and the results indicate the NMN approach could reduce the imbalanced class problem and achieve better predictions. Subsequently, we apply the MIMO-NMN method to analyze data from the human hippocampus. The results indicate that the MIMO-NMN method is a promising approach to modeling neural dynamics and analyzing functional connectivity of multi-neuronal data.
机译:这封信提出了一种新颖的方法,即多输入多输出神经元模式网络(MIMO-NMN),用于对诸如海马体之类的神经集合体中的编码动力学和功能连通性进行建模。与Volterra-Wiener模型,线性-非线性级联(LNC)模型和广义线性模型(GLM)等常规方法相比,NMN在估计精度,模型解释和功能连通性分析方面具有多个优势。我们指出了当前神经尖峰建模方法的局限性,特别是当零点的数量明显大于尖峰数据中的零时,由不平衡类问题引起的估计偏差。通过与传统方法的比较,我们使用综合数据来测试NMN的性能,结果表明NMN方法可以减少不平衡类问题并获得更好的预测。随后,我们应用MIMO-NMN方法来分析来自人类海马的数据。结果表明,MIMO-NMN方法是一种有前途的方法来建模神经动力学和分析多神经元数据的功能连接。

著录项

  • 来源
    《Neural computation》 |2019年第7期|1327-1355|共29页
  • 作者单位

    Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA|Univ Southern Calif, Biomed Simulat Resource Ctr, Los Angeles, CA 90089 USA;

    Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA|Univ Southern Calif, Biomed Simulat Resource Ctr, Los Angeles, CA 90089 USA;

    Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA|Univ Southern Calif, Biomed Simulat Resource Ctr, Los Angeles, CA 90089 USA;

    Wake Forest Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27157 USA;

    Wake Forest Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27157 USA;

    Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA|Univ Southern Calif, Biomed Simulat Resource Ctr, Los Angeles, CA 90089 USA;

    Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA|Univ Southern Calif, Biomed Simulat Resource Ctr, Los Angeles, CA 90089 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号