首页> 外文期刊>Neural computation >Dual Neural Network Method for SolvingMultiple Definite Integrals
【24h】

Dual Neural Network Method for SolvingMultiple Definite Integrals

机译:对偶神经网络方法求解 r n多个定积分

获取原文
获取原文并翻译 | 示例

摘要

This study, which examines a calculation method on the basis of a dual neural network for solving multiple definite integrals, addresses the problems of inefficiency, inaccuracy, and difficulty in finding solutions. First, the method offers a dual neural network method to construct a primitive function of the integral problem; it can approximate the primitive function of any given integrand with any precision. On this basis, a neural network calculation method that can solve multiple definite integrals whose upper and lower bounds are arbitrarily given is obtained with repeated applications of the dual neural network to construction of the primitive function. Example simulations indicate that compared with traditional methods, the proposed algorithm is more efficient and precise in obtaining solutions for multiple integrals with unknown integrand, except for the finite input-output data points. The advantages of the proposed method include the following: (1) integral multiplicity shows no influence and restriction on the employment of the method; (2) only a finite set of known sample points is required without the need to know the exact analytical expression of the integrand; and (3) high calculation accuracy is obtained for multiple definite integrals whose integrand is expressed by sample data points.
机译:这项研究探讨了基于对偶神经网络求解多个定积分的计算方法,解决了效率低下,不准确以及难以找到解的问题。首先,该方法提供了一种双重神经网络方法来构造积分问题的原始函数。它可以以任何精度近似任何给定积分的原始函数。在此基础上,通过将对偶神经网络重复应用于原始函数的构造,获得了一种神经网络计算方法,该方法可以求解任意定上下界的多个定积分。实例仿真表明,与传统方法相比,除了有限的输入-输出数据点之外,所提出的算法在获得具有未知被积数的多个积分的解中更为有效和精确。该方法的优点包括:(1)整数多重性对方法的使用没有影响和限制; (2)只需要有限的一组已知采样点,而无需知道被积物的精确解析表达式; (3)对于多个积分的计算精度很高,这些积分的整数被采样数据点表示。

著录项

  • 来源
    《Neural computation》 |2019年第1期|208-232|共25页
  • 作者单位

    Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Inner Mongolia, Peoples R China;

    Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Inner Mongolia, Peoples R China;

    Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Inner Mongolia, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号