首页> 外文期刊>Neural computation >Dual Neural Network Method for SolvingMultiple Definite Integrals
【24h】

Dual Neural Network Method for SolvingMultiple Definite Integrals

机译:双神经网络求解方法多个确定的积分

获取原文
获取原文并翻译 | 示例

摘要

This study, which examines a calculation method on the basis of a dual neural network for solving multiple definite integrals, addresses the problems of inefficiency, inaccuracy, and difficulty in finding solutions. First, the method offers a dual neural network method to construct a primitive function of the integral problem; it can approximate the primitive function of any given integrand with any precision. On this basis, a neural network calculation method that can solve multiple definite integrals whose upper and lower bounds are arbitrarily given is obtained with repeated applications of the dual neural network to construction of the primitive function. Example simulations indicate that compared with traditional methods, the proposed algorithm is more efficient and precise in obtaining solutions for multiple integrals with unknown integrand, except for the finite input-output data points. The advantages of the proposed method include the following: (1) integral multiplicity shows no influence and restriction on the employment of the method; (2) only a finite set of known sample points is required without the need to know the exact analytical expression of the integrand; and (3) high calculation accuracy is obtained for multiple definite integrals whose integrand is expressed by sample data points.
机译:本研究,该研究基于一个用于解决多个确定积分的双神经网络的计算方法,解决了效率低下,不准确性和寻找解决方案的难度问题。首先,该方法提供双神经网络方法,构建积分问题的原始函数;它可以用任何精度近似于任何给定的集成和平的原始函数。在此基础上,可以通过双神经网络的重复应用来解决任意给出的多个确定的多个积分的神经网络计算方法,其对原始函数的构建来获得逐个给出的上下界限。示例模拟表明,与传统方法相比,所提出的算法更有效,精确地获得了具有未知积分的多个积分的解决方案,除了有限输入输出数据点之外。所提出的方法的优点包括以下内容:(1)积分多样性显示对方法的使用没有影响和限制; (2)仅需要一组有限的已知样品点,而无需了解整体的确切分析表达; (3)获得高计算精度,对于多个确定的积分,其集成量由样本数据点表示。

著录项

  • 来源
    《Neural computation》 |2019年第1期|208-232|共25页
  • 作者单位

    Inner Mongolia Univ Technol Coll Sci Hohhot 010051 Inner Mongolia Peoples R China;

    Inner Mongolia Univ Technol Coll Sci Hohhot 010051 Inner Mongolia Peoples R China;

    Inner Mongolia Univ Technol Coll Sci Hohhot 010051 Inner Mongolia Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号