首页> 外文期刊>Neural computation >Learning Moral Graphs in Construction of High-Dimensional Bayesian Networks forMixed Data
【24h】

Learning Moral Graphs in Construction of High-Dimensional Bayesian Networks forMixed Data

机译:在混合数据的高维贝叶斯网络构建中学习道德图

获取原文
获取原文并翻译 | 示例

摘要

Bayesian networks have been widely used in many scientific fields for describing the conditional independence relationships for a large set of random variables. This letter proposes a novel algorithm, the so-called p-learning algorithm, for learning moral graphs for high-dimensional Bayesian networks. The moral graph is a Markov network representation of the Bayesian network and also the key to construction of the Bayesian network for constraint-based algorithms. The consistency of the p-learning algorithm is justified under the small-n, large-p scenario. The numerical results indicate that the p-learning algorithm significantly outperforms the existing ones, such as the PC, grow-shrink, incremental association, semi-interleaved hiton, hill-climbing, and max-min hill-climbing. Under the sparsity assumption, the p-learning algorithm has a computational complexity of O(p(2)) even in the worst case, while the existing algorithms have a computational complexity of O(p(3)) in the worst case.
机译:贝叶斯网络已在许多科学领域中广泛用于描述大量随机变量的条件独立性关系。这封信提出了一种新颖的算法,即所谓的p学习算法,用于学习高维贝叶斯网络的道德图。道德图是贝叶斯网络的马尔可夫网络表示,也是构建基于约束的算法的贝叶斯网络的关键。在小n大p情况下,p学习算法的一致性是合理的。数值结果表明,p学习算法明显优于现有算法,例如PC,增长收缩,增量关联,半交织Hiton,爬山和最大-最小爬山。在稀疏假设下,p学习算法即使在最坏的情况下也具有O(p(2))的计算复杂度,而现有算法在最坏的情况下也具有O(p(3))的计算复杂度。

著录项

  • 来源
    《Neural computation》 |2019年第6期|1183-1214|共32页
  • 作者单位

    Univ Florida, Dept Biostat, Gainesville, FL 32611 USA;

    Eli Lilly & Co, Lilly Corp Ctr, Indianapolis, IN 46285 USA;

    Purdue Univ, Dept Stat, W Lafayette, IN 47906 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号