首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning Discriminative Bayesian Networks from High-Dimensional Continuous Neuroimaging Data
【24h】

Learning Discriminative Bayesian Networks from High-Dimensional Continuous Neuroimaging Data

机译:从高维连续神经影像数据学习判别贝叶斯网络

获取原文
获取原文并翻译 | 示例

摘要

Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.
机译:由于其因果语义,贝叶斯网络(BN)已被广泛用于在探索性研究(例如脑研究)中发现潜在的数据关系。尽管成功地建模了变量的概率分布,但BN自然是一个生成模型,不一定具有判别力。这可能会导致对细微但关键的网络更改的无知,而这些更改是整个人群的调查值。在本文中,我们建议从两个不同的角度提高BN模型对连续变量的判别能力。这为高斯贝叶斯网络(GBN)带来了两个通用的判别性学习框架。在第一个框架中,我们使用Fisher核将GBN的生成模型和SVM的判别式分类器进行桥接,并通过最小化SVM的泛化误差范围将GBN参数学习转换为Fisher核学习。在第二个框架中,我们采用max-margin准则并将其直接建立在GBN模型上,以明确优化GBN的分类性能。讨论并通过实验比较了两个框架的优缺点。两者都展示了强大的能力,可用于基于神经影像的脑网络分析学习GBN的判别参数,并保持合理的表示能力。本文的贡献还包括具有理论保证的新的有向无环图(DAG)约束,以确保GBN的图有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号